THE FIRST-ORDER COHOMOLOGY GROUP OF SOME COMMUTATIVE SEMIGROUP ALGEBRAS

Hussein M. GHLAIO

Department of Mathematics, Misurata University, Misurata, Libya
H.Ghlaio@Sci.misuratau.edu.ly

ABSTRACT

In this paper we calculate the first-order cohomology group $H^1(ℓ^1(S), ℓ^∞(S))$, where S is a commutative, 0-cancellative, nil*-semigroup.

KEYWORDS

semigroup, semigroup algebra, Cohomology.

1. INTRODUCTION

In [1], Bowling and Duncan investigated the first-order cohomology group $H^1(ℓ^1(S), ℓ^∞(S))$ and $H^1(ℓ^1(S), ℓ^1(S))$ for some classes of discrete semigroups, such as Clifford semigroups, Rees semigroups, and bicyclic semigroups. They also studied the cyclic cohomology in these cases. For a Banach algebra A and a Banach A-bimodule X, it was shown that it is often possible to compute $H^1(A,X)$, where X is A, or X is A^*, with their bimodule products. For example, in the case of bicyclic semigroups S, it was proved that $H^1(ℓ^1(S), ℓ^∞(S))$ is isomorphic to $ℓ^∞(N)$.

In our result we shall establish a relationship between the first-order cohomology group $H^1(ℓ^1(S), ℓ^∞(S))$, where the semigroup S is a commutative, 0-cancellative, nil*-semigroup, and the direct sum $⊕_{x≠0∈S} V_S^*(x) ⊕_{C∈C} W_C^*$ for non-zero elements x of S, where the direct sum is in the sense of $ℓ^∞$.

2. Preliminaries

Let S be a semigroup. An element $e ∈ S$ is an identity if $es = se = s$ $(s ∈ S)$. A semigroup with an identity is a unital semigroup.

Suppose that S does not have an identity. Then we choose $e ∉ S$, and set $S^# = S ∪ \{e\}$ with $es = se = s$ $(s ∈ S)$ and $e^2 = e$. Then $S^#$ is a semigroup, called the unitization of S.

Let S be a semigroup, and $x, y ∈ S$. Then $y|x$ means that $x ∈ yS^#$. A zero of S is an element $o ∈ S$ with $os = so = o^2 = o$ $(s ∈ S)$.

Definition 2.1 Let S be a unital, commutative semigroup. Then, for $x ∈ S$, we define

$$M_x = \{(y, z) ∈ S × S; yz = x\} \quad \text{and} \quad V_S(x) = \{y ∈ S; x ∈ yS\}. \quad (2.1)$$

We call $V_S(x)$ the set of divisors of x.

Note that $a, b ∈ V_S(x)$ whenever $ab ∈ V_S(x)$, and also $x ∈ V_S(x)$ because S has an identity.

The following notion (in a different, additive notation) is given in [2], §4.

Definition 2.2 Let S be a unital commutative semigroup. For each $x ∈ S$, we define the space $V_S^*(x)$ to consist of the bounded functions $g: V_S(x) → ℂ$ satisfying the logarithmic condition
\[g(ab) = g(a) + g(b) \quad (2.2) \]
whenever \(a, b \in S \) and \(ab \in V_\delta(x) \).

Clearly \(V_\delta^*(x) \) is a linear space containing the zero function.

Note that for \(V_\delta(e) = \{ e \} \) and that \(V_\delta^*(e) = \{ 0 \} \). Also, in the case where \(S \) has a zero \(o \), \(V_\delta(o) = S \) and \(V_\delta^*(o) = \{ 0 \} \).

Example 2.3 Take \(S = \mathbb{R}^+ \times \mathbb{R}^+ \) with normal addition. Then \(S \) is a unital, commutative semigroup, and \(\dim V_\delta^*(x) \geq 2 \) for some non-zero \(x \in S \).

Take the non-zero element \(x = (1,1) \) in \(S \). So that we have \(V_\delta(x) = [0,1] \times [0,1] \). For \((r,s) \in V_\delta(x)\), define the functions \(g_1,g_2:V_\delta(x) \to \mathbb{C} \) by \(g_1(r,s) = r \) and \(g_2(r,s) = s \). Then \(g_1, g_2 \in V_\delta^*(x) \) and, since \(g_1 \) and \(g_2 \) are linearly independent, \(\dim V_\delta^*(x) \geq 2 \).

Proposition 2.4 Let \(S \) be a unital, commutative semigroup and suppose that \(x \in S \) is a non-zero element with \(\dim V_\delta^*(x) \geq 2 \). Then there exists a non-zero \(g \in V_\delta^*(x) \) with \(g(x) = 0 \).

Proof Let \(g_1 \) and \(g_2 \) be linearly independent functions in \(V_\delta^*(x) \). If \(g_1(x) = 0 \), then take \(g = g_1 \). Otherwise consider

\[g = g_2 - \frac{g_2(x)}{g_1(x)} \cdot g_1. \]

Then \(g \in V_\delta^*(x) \) and \(g(x) = 0 \). Thus the proposition is proved.

Suppose that \(S \) is a commutative, 0-cancellative semigroup, that \(r \in S \backslash \{ o \} \), and that \(x \in V_\delta(r) \). Then there exists a unique element \(y \in V_\delta(r) \) such that \(r = xy \).

Note that for \(r = o \), an element \(y \) such that \(xy = o \) is not necessarily unique.

Definition 2.5 Let \(S \) be a commutative, 0-cancellative semigroup. For each non-zero element \(r \in S \), the unique element \(y \in V_\delta(r) \) of \(x \in V_\delta(r) \) such that \(xy = r \) is called \(u(x) \).

The following is a small modification of the set \(M_x \) that we defined in Definition 2.1.

Definition 2.6 Let \(S \) be a unital, commutative semigroup with zero \(o \). We define the set

\[M_0^- = \{ (a,b) \in S \times S : a \neq o, b \neq o \quad \text{and} \quad ab = o \} \].

We define an equivalence relation \(\sim \) on the set \(M_0^- \). It is the equivalence relation generated by the relations:

1. \((a_1a_2,c) \sim (a_1,a_2c)\) for all \(a_1,a_2,c \in S \) with \(a_1a_2c = o \) and \(a_1a_2 \neq o, a_2c \neq o \); and
2. \((a,b) \sim (b,a)\) for \((a,b) \in M_0^- \).

It is possible that \(M_0^- = \emptyset \). Indeed, take \(S = \{ o, e \} \). Then \(M_0^- = \emptyset \).

Definition 2.7 Let \(S \) be a unital, commutative semigroup with zero \(o \) and identity \(e \). Let \(C \subseteq M_0^- \) be an equivalence class, and let \(\varphi: C \to \mathbb{C} \) be a bounded function. Then we define the set \(\tilde{C} = C \cup (S \times \{ o \}) \cup (\{ o \} \times S) \), and extend the function \(\varphi \) to a function \(\tilde{\varphi}: \tilde{C} \to \mathbb{C} \) satisfying

\[\tilde{\varphi}(o,a) = \tilde{\varphi}(a,o) = 0 \quad (a \in S). \quad (2.3) \]

Then the function \(\varphi \) is sensible if we have

\[\tilde{\varphi}(a,bc) + \tilde{\varphi}(b,ac) = \tilde{\varphi}(ab,c) \quad (2.4) \]
whenever \((a,bc) \in \tilde{C} \) or \((b,ac) \in \tilde{C} \) or \((ab,c) \in \tilde{C} \).
Note that \(\tilde{\varphi} \) is defined at all three pairs \((a, bc), (b, ac), (ab, c)\) whenever any one of these pairs is in the equivalence class \(\tilde{C} \). E.g. if \((a, bc) \in \tilde{C} \), then either \((ac, b) \in \tilde{C} \), and hence \((b, ac) \in \tilde{C} \), or \((ac, b) = (a, b)\).

Note that (2.4) implies that
\[
\varphi(a, b) + \varphi(b, a) = \tilde{\varphi}(ab, e) = \tilde{\varphi}(a, e) = 0 \quad ((a, b) \in C). \quad (2.5)
\]
The sensible functions on an equivalence class \(C \) form a linear space, which we call \(\mathcal{W}_C^* \), and they have the uniform norm
\[
\|\varphi\|_\infty = \sup_{(a, b) \in C} |\varphi(a, b)|.
\]
The space \(\mathcal{W}_C^* \) is a closed linear subspace of the Banach space \(\ell^\infty(C) \).

We denote the collection of all such equivalence classes by \(\mathcal{C} \).

Definition 2.8 Let \(S \) be a semigroup. Then the convolution product of two elements \(f \) and \(g \) in the Banach space \(\ell^1(S) \) is defined by the formula:
\[
f \ast g = (\sum_{s \in S} \alpha_s \delta_s) \ast (\sum_{t \in S} \beta_t \delta_t) = \sum \{ \sum_{s = t \in S} \alpha_s \beta_t \delta_t \}.
\]
The inner sum will vanish if there are no \(s \) and \(t \) in \(S \) such that \(st = r \). Clearly, \((\ell^1(S)) \ast \) is a Banach algebra; it is called the semigroup algebra of \(S \).

The dual space of \(\mathcal{A} = \ell^1(S) \) is \(\mathcal{A}^* = \ell^\infty(S) \), where
\[
\ell^\infty(S) = \left\{ f: S \to \mathbb{C} : \|f\| = \sup_{s \in S} |f(s)| < \infty \right\},
\]
with the duality given by:
\[
\langle f, \lambda \rangle = \sum_{s \in S} f(s) \lambda(s) \quad (f \in \ell^1(S), \lambda \in \ell^\infty(S)).
\]

3. The main result

In our result we shall establish a relationship between the first-order cohomology group \(\mathcal{H}^1(\ell^1(S), \ell^\infty(S)) \), where the semigroup \(S \) is commutative, 0-cancellative, \(nnil^# \)-semigroup, and the direct sum \(\bigoplus_{x \neq 0 \in S} V_S^* (x) \bigoplus_{C \in C} \mathcal{W}_C^* \) for non-zero elements \(x \) of \(S \), where the direct sum is in the sense of \(\ell^\infty \).

Theorem 3.1 Let \(S \) be a commutative, 0-cancellative, \(nnil^# \)-semigroup. Then
\[
\mathcal{H}^1(\ell^1(S), \ell^\infty(S)) \cong \bigoplus_{x \neq 0 \in S} V_S^* (x) \bigoplus_{C \in C} \mathcal{W}_C^*,
\]
where the sum is an \(\ell^\infty \)-direct sum.

Proof We define an isomorphism
\[
\Theta: \bigoplus_{x \neq 0 \in S} V_S^* (x) \bigoplus_{C \in C} \mathcal{W}_C^* \to \mathcal{H}^1(\mathcal{A}, \mathcal{A}^*)
\]
as follows: Given bounded families \((g_x) \in \bigoplus_{x \neq 0 \in S} V_S^* (x) \) and \((\varphi_C) \in \bigoplus_{C \in C} \mathcal{W}_C^* \), so that \(((g_x), (\varphi_C)) \) belongs to the \(\ell^\infty \)-direct sum, we define \(\gamma: S \times S \to \mathbb{C} \) such that
We now consider the map
\[\gamma(s, t) = \begin{cases}
0 & \text{if } s = 0 \text{ or } t = 0, \\
g_{st}(s) & \text{if } st \neq 0, \\
\varphi_c(s, t) & \text{if } st = 0 \text{ and } (s, t) \in \mathcal{C}
\end{cases} \] (3.1)

Now set \(\mathcal{A} = \ell^1(S) \), and define a map \(D: \mathcal{A} \to \mathcal{A}^* \) by the relation:
\[\langle \delta, D(\delta) \rangle = \gamma(s, t) \quad (s, t \in S). \] (3.2)

The map \(D \) extends to a linear map, and \(D \) is bounded because the functions \(\varphi_c \) and \(g_x \) are uniformly bounded.

Note that \(D(\delta_o) = 0 = \langle \delta_o, D(\delta) \rangle \) for each \(s \in S \).

We claim (essentially following [2, Proposition 4.2]), that \(D \) is a derivation.

To prove this, take the elements \(u, v, t \in S \). We shall show that
\[\langle \delta, D(\delta) \rangle = \langle \delta, uD(\delta) + D(\delta) v \rangle = 0. \]

That is we shall show that \(\gamma(uv, t) = \gamma(u, vt) + \gamma(v, ut) \).

In the case where \(uv = o \), we have to discuss the following two cases:

Case 1: If at least two of \(u, v \) and \(t \) are zero, so that \(uv, vt \) and \(ut \) are zero, then by using (3.1) we have \(\gamma(uv, t) = \gamma(u, vt) + \gamma(v, ut) = 0 \).

Case 2: If at most one of \(u, v \) and \(t \) are zero, then we have to look at two possibilities.

Firstly, if each of the pairs \((uv, t), (ut, v) \) and \((vt, u) \) contains a zero element, we still have
\[\gamma(uv, t) = \gamma(u, vt) = \gamma(v, tu) = 0. \]

Secondly, if at least one of the pairs \((uv, t), (ut, v) \), and \((vt, u) \) has both elements non-zero, say \(uv \neq o \neq t \), then \((uv, t) \) must belong to an equivalence class \(C \) if \(ut \neq o \), then \((v, ut) \in C \) and, if \(vt \neq o \), then \((u, vt) \in C \), so that by using (2.4), we have
\[\gamma(uv, t) - \gamma(u, vt) - \gamma(v, ut) = \varphi_c(uv, t) - \varphi_c(u, vt) - \varphi_c(v, ut) = 0. \]

In the case where \(uv \neq o \), we have
\[\langle \delta, D(\delta) \rangle = \gamma(uv, t) = g_{uv}(uv) = g_{uv}(u) + g_{uv}(v) = \gamma(u, vt) + \gamma(v, ut) \]
\[= \langle \delta u, D(\delta) \rangle + \langle \delta v, D(\delta) \rangle = \langle \delta s, \delta t \rangle D(\delta) + D(\delta) \cdot (\delta s, \delta t). \]

Thus \(D \) is a bounded derivation.

The derivation \(D \) depends on our choice of the function \(g_x \in V^*_x(x) \) and the function \(\varphi_c \in W^*_c \). Given bounded families \(g_x \in V^*_x(x) \quad (x \in S) \) and \(\varphi_c \in W^*_c \quad (C \in \mathcal{C}) \), then we have an element denoted by \(D[(g_x)_{x \in S}, (\varphi_c)_{c \in \mathcal{C}}] \in \mathcal{H}^1(\mathcal{A}, \mathcal{A}^*) \).

We now consider the map
\[\Theta: \bigoplus_{x \neq o \in S} V^*_x(x) \bigoplus_{c \in \mathcal{C}} W^*_c \to \mathcal{H}^1(\mathcal{A}, \mathcal{A}^*) \]
such that
\[\Theta((g_x), (\varphi_c)) = D[(g_x)_{x \in S}, (\varphi_c)_{c \in \mathcal{C}}]. \]
Clearly Θ is linear.

Suppose that $D[(g_s)_{s \in S}, (\varphi_C)_{C \in C}] = 0$. Then $\langle \delta_t, D(\delta_s) \rangle = 0$ for all $s, t \in S$, and so $g_{st}(s) = \varphi_C(s, s_t) = 0$ whenever $s = s_1 s_2, t \in S$ and $st \neq o, s_1 s_2 t = o$. This shows that Θ is injective.

Finally, to see that Θ is surjective, suppose that $D_0 : A \to A^*$ is a derivation, and then define $\gamma(s, t) = \langle \delta_t, D_0(\delta_s) \rangle$ for all $s, t = o$ in S.

We claim that, for $x \neq o$, the function γ is of form $g_x(s)$ for some $g_x \in V_2(x)$ when restricted to the set $M_\gamma = \{(s, t) : st = x\}$. We also claim that for each $C \in C$, the function $\gamma_C = \gamma(C)$ is an element of W_C^*; and in fact $\gamma(s, t) = 0$ if $s = o$ or $t = o$. Then clearly that g_x and φ_C must be uniformly bounded otherwise D_0 is not a bounded derivation, so that we have

$$D_0 = D[(g_s)_{s \in S}, (\varphi_C)_{C \in C}] .$$

Since $D(\delta_o) = 0$, whenever $\gamma(o, t) = 0$ for all $t \in S$. Also for $s \in S$ we have that

$$\gamma(s, o) = \langle \delta_o, D(\delta_s) \rangle = \langle \delta_s, \delta_o D(\delta_o) \rangle = \langle \delta_1, \delta_o D(\delta_2) - \delta_o D(\delta_2) \rangle = 0 ,$$

so that $\gamma(s, t) = 0$ whenever $s = o$ or $t = o$.

Now restrict γ to M_γ for $x \neq o$. We claim that there exists $g_x \in V_2(x)$ with $\gamma(s, t) = g_x(s)$. We do not give proof because this is essentially a repeat of a previous proof.

Restrict γ to $\tilde{C} \in C$. We claim that $\gamma(\tilde{C})$ is an element of W_C^*, and so that γ is sensible.

To prove our claim, we shall see that

$$\tilde{\gamma}(a b, c) = \tilde{\gamma}(a, b c) + \tilde{\gamma}(b, a c) \quad (3.3)$$

whenever $(a b, c) \in \tilde{C}$ or $(a, b c) \in \tilde{C}$ or $(c, a b) \in \tilde{C}$.

In fact $\tilde{\gamma}(u, v) = \langle \delta_v, D(\delta_u) \rangle$, and so, by using (3.3), for $a, b, c \in S$, we have

$$\tilde{\gamma}(a b, c) = \langle \delta_c, D(\delta_{a c}) \rangle = \langle \delta_c, \delta_b D(\delta_a) + \delta_a D(\delta_b) \rangle$$

Thus the theorem is proved.

Corollary 3.2 Let S be a commutative, 0-cancellative, nil #-semigroup. Then

$$\dim H^1(\ell_1(S), \ell_0^\infty(S)) = \sum_{x \neq o \in S} \dim V_2^*(x) + \sum_{C \in C} \dim W_C^* .$$

REFERENCES