CYCLIC WEAKLY AMENABLE SEMIGROUP ALGEBRAS WHICH ARE NOT WEAKLY AMENABLE

Hussein Mohamed Ghlaio

Department of Mathematics, Faculty of Science , Misurata University, Misurata, Libya H.Ghlaio@gmail.com

Article information	Abstract
Key words semigroup algebra, cyclic weakly amenable. <i>Received 26 February 2021,</i> <i>Accepted 22 March 2021,</i> <i>Available online 01 April</i> 2021	In this paper we shall construct some examples where the semigroup algebra $\ell^1(S)$ is cyclic weakly amenable but not weakly amenable ,where S is a commutative, 0-cancellative, nil^{\sharp} -semigroup.

I. INTRODUCTION

We follow [1] to recall some definitions and some preliminaries. Let \mathcal{A} be a Banach algebra, and let X be a Banach \mathcal{A} -bimodule. A linear map $D: \mathcal{A} \to X$ is a *derivation* if it satisfies the equation:

$$D(ab) = a \cdot Db + Da \cdot b \quad (a, b \in \mathcal{A}).$$

In this paper we shall only consider bounded derivations. Given $x \in X$ and define the map $\delta_x : \mathcal{A} \to X$ by the equation: $\delta_x(a) = a \cdot x - x \cdot a \quad (a \in \mathcal{A}).$

These derivations are *inner* derivations.

Let X^* be the *dual space* of X. Then X^* is a Banach \mathcal{A} -bimodule with respect to the operations given by

$$\langle x, a \cdot \lambda \rangle = \langle x \cdot a, \lambda \rangle$$
 and
 $\langle x, \lambda \cdot a \rangle = \langle a \cdot x, \lambda \rangle$ $(a \in \mathcal{A}, x \in X, \lambda \in X^*)$
A Banach algebra \mathcal{A} is *amenable* if every bounded

derivation D from \mathcal{A} into a dual Banach \mathcal{A} -bimodule X^* is inner, for each Banach \mathcal{A} -bimodule X.

A Banach algebra \mathcal{A} is a Banach \mathcal{A} -bimodule over itself. Then a Banach algebra \mathcal{A} is *weakly amenable* if every bounded derivation $D: \mathcal{A} \to \mathcal{A}^*$ is inner. A linear map $T: \mathcal{A} \to \mathcal{A}^*$ is cyclic if $T(a_1)(a_0) = (-1)T(a_0)(a_1)$ for all $a_0, a_1 \in \mathcal{A}$; in other words, $\langle a_0, T(a_1) \rangle + \langle a_1, T(a_0) \rangle =$ 0 $(a_0, a_1 \in \mathcal{A})$. In particular, $\langle a, T(a) \rangle = 0$ $(a \in \mathcal{A})$. The space of all bounded, cyclic derivations from \mathcal{A} to

The space of all bounded, cyclic derivations from \mathcal{O}^{t} to \mathcal{A}^* is denoted by $\mathcal{ZC}^{\mathsf{1}}(\mathcal{A}, \mathcal{A}^*)$, and the set of all cyclic inner derivations from \mathcal{A} to \mathcal{A}^* is denoted by $\mathcal{NC}^{\mathsf{1}}(\mathcal{A}, \mathcal{A}^*)$. It can be seen that every inner derivation is cyclic, and so $\mathcal{NC}^{\mathsf{1}}(\mathcal{A}, \mathcal{A}^*) = \mathcal{N}^{\mathsf{1}}(\mathcal{A}, \mathcal{A}^*)$. The first-order cyclic cohomology group is defined by

$$\mathcal{HC}^{1}(\mathcal{A},\mathcal{A}^{*}) = \frac{\mathcal{ZC}^{1}(\mathcal{A},\mathcal{A}^{*})}{\mathcal{NC}^{1}(\mathcal{A},\mathcal{A}^{*})} = \mathcal{ZC}^{1}(\mathcal{A},\mathcal{A}^{*})/\mathcal{N}^{1}(\mathcal{A},\mathcal{A}^{*}).$$

A Banach algebra \mathcal{A} is cyclic weakly amenable if $\mathcal{HC}^{1}(\mathcal{A}, \mathcal{A}^{*}) = \{0\}$. It is obvious that

 $\mathcal{HC}^{1}(\mathcal{A},\mathcal{A}^{*}) \subseteq \mathcal{H}^{1}(\mathcal{A},\mathcal{A}^{*})$, so each weakly amenable Banach algebra is cyclic weakly amenable.

Let S be a non-empty set, and let S be an element of S. The characteristic function of $\{S\}$ is denoted by δ_s . We define the *Banach space*

$$\ell^{1}(S) := \left\{ f: S \to \mathbb{C}, \quad f = \sum_{s \in S} \alpha_{s} \delta_{s}, \sum_{s \in S} |\alpha_{s}| < \infty \right\},$$

where $||f|| = \sum_{s \in S} |\alpha_s| < \infty$.

The dual space of
$$\mathcal{A} = \ell^{-1}(S)$$
 is $\mathcal{A}^* = \ell^{-\infty}(S)$, where

$$\ell^{\infty}(S) = \left\{ f: S \to \mathbb{C}, \quad \|f\| = \sup_{s \in S} |f(s)| < \infty \right\},$$
with the duality given by

with the duality given by:

$$\langle f, \lambda \rangle = \sum_{s \in S} f(s)\lambda(s) \quad (f \in \ell^{1}(S), \lambda \in \ell^{\infty}(S)).$$

Let S be a semigroup. Then the *convolution product* of two elements f and g in the Banach space $\ell^{1}(S)$ is defined by the formula:

$$f * g = \left(\sum_{s \in S} \alpha_s \delta_s\right) * \left(\sum_{t \in S} \beta_t \delta_t\right) = \sum \left\{ \left(\sum_{s t = r \in S} \alpha_s \beta_t\right) \delta_r \right\}$$

The inner sum will vanish if there are no S and t such that st = r.

Clearly, $(\ell^1(S), *)$ is a Banach algebra; it is called the *semigroup algebra* of S.

We shall need to use the following remark:

Remark 1.1

Let S be a semigroup, and take g to be a function on $S \times S$. For $a, b \in S$, define

$$T_g(\delta_a,\delta_b)=g(a,b),$$

and then extend T_g to be a bilinear function on $\ell_0^1(S) \times \ell_0^1(S)$. In the case where g is bounded by M, T_g extends to a bounded, bilinear functional on $\ell^1(S) \times \ell^1(S)$.

Explicitly,

$$\left| T_g \left(\sum_i \alpha_i \delta_{a_i}, \sum_j \beta_j \delta_{b_j} \right) \right| = \left| \sum_{i,j} \alpha_i \beta_j g(a_i, b_j) \right| \le M \sum_i |\alpha_i| \sum_j |\beta_j|.$$

Now define $\widetilde{T}_{g}: \ell^{1}(S) \to \ell^{\infty}(S)$ by $\langle h, \widetilde{T}_{g}(f) \rangle = T_{g}(f, h) \quad (f, h \in \ell^{1}(S)).$

Then
$$T_g$$
 is a bounded linear map and
 $\langle \delta_b, \widetilde{T}_g(\delta_a) \rangle = g(a, b) \quad (a, b \in S).$

Throughout the paper, S denotes a countable commutative nil^{\sharp} -semigroup which is the unitization of a nil semigroup S^- (that is, a semigroup S^- with zero such that for all $x \in S^-$, there is an $n \in \mathbb{N}$ such that $x^n = o$), and which is zero-cancellative (that is, for all $a, b, c \in S$, $ab = ac \neq o$ implies b = c).

Following [2], we shall write $V_S(x)$ for the set of divisors of x in a unital semigroup S, that is,

$$V_S(x) = \{y \in S : \exists z \in S, yz = x\}.$$

The set $V_{S}^{*}(x)$ is the collection of all functions $g: V_{S}(x) \to \mathbb{C}$ satisfying the logarithmic condition $g(ab) = g(a) + g(b) \quad (ab \in V_{S}(x))$ (I.1) In our paper, we shall apply the characterization of cyclic weak amenability of some certain commutative

semigroup algebras $\ell^1(S)$, as established in [3], where S is a commutative, 0-cancellative, $nil^{\not z}$ semigroup, as introduced in [2] where S is a finite or an infinite semigroup. Then we shall construct some examples where $\ell^1(S)$ is cyclic weakly amenable but not weakly amenable.

II Finite semigroups

In this section we shall discuss cyclic weak amenability of the semigroup algebra $\mathcal{A} = \ell^1(S)$, where S is a finite, commutative, 0-cancellative, nil^{\sharp} -semigroup.

An element $a \neq e \in S$ is an *atom* if $V_S(a) = \{o, e\}$. we shall show that \mathcal{A} is cyclic weakly amenable only when S has exactly one atom, or $S = \{o, e\}$.

Proposition II.1

Let S be a finite, commutative, 0-cancellative, $nil^{\not a}$ semigroup with just one atom. Then the semigroup
algebra $\mathcal{A} = \ell^1(S)$ is cyclic weakly amenable.

Proof

Suppose that S is a finite, commutative, 0-cancellative, $nil^{\#}$ -semigroup with just one atom a. Then the semigroup S can be written as

 $T_n = \{e, a, a^2, \dots, a^{n-1}, a^n = o\}$ for some $n \in \mathbb{N}$ with $n \ge 2$. We suppose that $\mathcal{A}_n = \ell^1(T_n)$

Take a derivation $D: \mathcal{A}_n \to \mathcal{A}_n^*$. Then D is bounded because the semigroup algebra \mathcal{A}_n is finite dimensional.

We have $D(\delta_e) = D(\delta_o) = 0$. It can be proved that $D(\delta_a) = \lambda_e \delta_e^* + \lambda_1 \delta_a^* + \dots + \lambda_{n-2} \delta_{n-2}^*$

 $D(o_a) = \lambda_e o_e^* + \lambda_1 o_a^* + \dots + \lambda_{n-2} o_{a^{n-1}}$ for some $\lambda_e, \lambda_1, \dots, \lambda_{n-2} \in \mathbb{C}$.

We know that D is cyclic if and only if satisfies the equation:

$$\langle f, D(g) \rangle + \langle g, D(f) \rangle = 0 \quad (f, g \in \mathcal{A}).$$
 (II.1)

Tak

 $f = \delta_{a^k}$ and $g = \delta_a$ for k = 0, ..., n-1, where $a^0 = e$ and $\delta_a \circ = \delta_e$. Then

$$\begin{array}{l} \langle f, D(g) \rangle + \langle g, D(f) \rangle = \left\langle \delta_{a^k}, D(\delta_a) \right\rangle + \\ \left\langle \delta_a, D(\delta_{a^k}) \right\rangle \end{array}$$

$$= \left\langle \delta_{a^{k}}, D(\delta_{a}) \right\rangle + \left\langle \delta_{a}, k \delta_{a^{k-1}} D(\delta_{a}) \right\rangle$$
$$= \left\langle \delta_{a^{k}}, D(\delta_{a}) \right\rangle + k \left\langle \delta_{a}, \delta_{a^{k-1}} D(\delta_{a}) \right\rangle$$
$$= (k+1) \left\langle \delta_{a^{k}}, D(\delta_{a}) \right\rangle,$$
and so, by (II.1), we have
$$\left\langle \delta_{a^{k}}, \lambda_{e} \delta_{e}^{*} + \lambda_{1} \delta_{a}^{*} + \dots + \lambda_{k} \delta_{a^{k}}^{*} + \dots + \lambda_{n-2} \delta_{a^{n-2}}^{*} \right\rangle = 0,$$

hence $\lambda_k = 0$ for all k = 0, ..., n - 2. So D = 0. Therefore $\mathcal{HC}^1(\mathcal{A}, \mathcal{A}^*) = \{0\}$. Thus the proposition is proved.

Proposition II.2

Let S be a finite, commutative, 0-cancellative, $nil^{\not s}$ semigroup with exactly two atoms a and b. Then the
semigroup algebra $\mathcal{A} = \ell^1(S)$ is not cyclic weakly
amenable.

Proof

Suppose that the elements a and b are two atoms of the semigroup S. We have to discuss two cases:

1. Let $ab \neq o$. We claim that $V_S(ab) = \{e, a, b, ab\}$. For if u|ab then either u = e or there is an atom v such that v|u. If a|u, then $u = au_1|ab$ implies that $u_1|b$, so $u_1 = e$ or $u_1 = b$. Hence (u = e or a or ab). Similarly, if b|u, we have u = b or u = ab.

Now we define the function $g \in V_s^*(ab)$ by:

$$g(x) = \begin{cases} 0 & if \ x = e \ or \ x = ab \\ 1 & if \ x = a \\ -1 & if \ x = b \end{cases}$$
(II.2)
By using (II.2), it is clear that

g(xy) = g(x) + g(y) for all $x, y \in S$ such that xy|ab. Thus by [3, Proposition 2.1], the semigroup algebra $\mathcal{A} = \ell^1(S)$ is not cyclic weakly amenable.

2. Let ab = o. Then the semigroup S can be defined $S = \{e, a, a^2, \dots, a^{n-1}, a^n = o = b^m, b, b^2, \dots b^{m-1}, ab = o\},$

for some $n, m \ge 2$.

A non-zero bounded sensible function $\varphi: \mathcal{C}_{(a,b)} \to \mathbb{C}$ can be defined on the class

$$\mathcal{C}_{(a,b)} = \{(a,b), (b,a)\}$$

by:
$$\varphi(x,y) = \begin{cases} 1 & if \ x = a \ and \ y = b \\ -1 & if \ x = b \ and \ y = a \end{cases}, (II.3)$$

So that by [3, Theorem 2.4], the semigroup algebra $\mathcal{A} = \ell^1(S)$ is not cyclic weakly amenable. Thus the proposition is proved.

III. Infinite semigroups

In this section we shall discuss cyclic weak amenability of the semigroup algebra $\mathcal{A} = \ell^1(S)$, where S is an infinite, commutative, 0-cancellative, *nil*[#]-semigroup. we shall show that \mathcal{A} is not cyclic weakly amenable if Shas at least two distinct atoms.

Proposition III.1

Let S be a commutative, 0-cancellative, nil^{a} . semigroup. Suppose that S has atoms a, b such that ab = o. Then the semigroup algebra $\mathcal{A} = \ell^1(S)$ is not cyclic weakly amenable.

Proof

We shall show that there is a non-zero bounded sensible function φ on the equivalence class $C_{(a,b)} \in M_o^$ with the equivalence relation defined on the set M_0^- as in [3, Definition 1.3]. We claim that

 $C_{(a,b)} = \{(a,b), (b,a)\}.$ (III.1) If so, a non-zero bounded sensible function $\varphi: \mathcal{C}_{(a,b)} \to \mathbb{C}$ can be defined by:

 $\varphi(x, y) = \begin{cases} 1 & if \ x = a \ and \ y = b \\ -1 & if \ x = b \ and \ y = a, \end{cases}$ so that by [3, Theorem 2.4], the semigroup algebra $\mathcal{A} = \ell^1(S)$ is not cyclic weakly amenable. To prove (III.1), suppose that $(a, b) \sim (p, q)$, so

either we write $a = \alpha \beta$. that and $(\alpha\beta, b) \sim (\alpha, \beta b)$. Otherwise we write $b = \gamma \lambda$, and $(a, \gamma \lambda) \sim (a\gamma, \lambda)$. But a is an atom, so if $a = \alpha \beta$ then $\alpha = e$ and $\beta = a$ otherwise if $\alpha = a$ and $\beta = e$ then the new pair is (a, b). Also if $\alpha = e$ and $\beta = a$ then the new pair $_{is}(e,ab) = (e,0) \notin M_o^-$.

Similarly, since b is an atom, we cannot get a new pair out of $(b\gamma, \lambda)$ with $\gamma \lambda = b$. Thus the proposition is proved.

Theorem III.2

Let S be a commutative, 0-cancellative, nil^{a} semigroup. Suppose that S has at least two distinct atoms. Then the semigroup algebra $\mathcal{A} = \ell^1(S)$ is not cyclic weakly amenable.

Proof

Suppose that S has two distinct atoms a, b.

We have two cases. If ab = o, then, by Proposition (III.1), we have that $\mathcal{A} = \ell^1(S)$ is not cyclic weakly amenable.

Suppose that $ab \neq o$. We claim that there is a nonzero bounded function g in $V_{s}^{*}(ab)$ with q(ab) = 0. We define q by

$$g(x) = \begin{cases} 1 & if \ x = a \\ -1 & if \ x = b \\ 0 & otherwise \end{cases}$$
 (III.2)

and we must show that g(xy) = g(x) + g(y)for all $x, y \in V_{S}(ab)$.

Suppose that $x, y \in V_S(ab)$. We have g(x) = g(y) = g(xy) = 0 unless one of x, y, xy is a or b. If xy = a or xy = b then the $\{x, y\}$ is $\{e, a\}$ or $\{e, b\}$ pair g(x) + g(y) = g(xy) hence we may assume towards a contradiction that x = a.

that y = e or y = bclaim We with g(x) + g(y) = g(xy)

For if y is not e or b we have ay = xy|ab so y|band b is not an atom. But this is a contradiction. Thus there is $g \in V_{S}^{*}(ab)$ with g(ab) = 0. Therefore by [3, Theorem 2.4], the semigroup algebra $\mathcal{A} = \ell^1(S)$ is not cyclic weakly amenable.

IV. Examples

We shall now establish some nice examples for some infinite semigroups, where the semigroup algebra $\ell^1(S)$ is cyclic weakly amenable but not weakly amenable.

Example IV.1

Let S be the semigroup
$$([0,1], \bigoplus)$$
 where
 $a \bigoplus b = \min(a+b,1)$ $(a,b \in S)$.

Then S is an infinite, commutative, 0-cancellative *nil*[#] -semigroup, and the semigroup algebra $\mathcal{A} = \ell^1(S)$ is cyclic weakly amenable but not weakly amenable.

Note that, in S, the unit element is 0 and the zero element is 1.

Let $0 . To show that <math>\mathcal{A}$ is not weakly amenable take the function \boldsymbol{g} to be the identity function, so that g(x) = x for all $x \in V_S(p)$. We have $V_S(p) = [0, p]$, hence $st \in V_S(p)$ implies that $s + t \leq p$, so that

$$g(s \oplus t) = s + t = g(s) + g(t) \,.$$

Thus $g \neq 0 \in V_{S}^{*}(p)$. By [2, Theorem 1.1], we see that \mathcal{A} is not weakly amenable.

To prove cyclic weak amenability, we have to show that every element h of $V_{S}^{*}(p)$ is a multiple of the function g, and then show that there are no bounded sensible functions as before. Since $q(p) \neq 0$, this shows that there is no non-zero element $h \in V_s^*(p)$ with h(p) = 0. Let $\alpha = h(p)$. Then the log-condition show that $h(p/n) = \alpha/n$ for all $n \in \mathbb{N}$ and $h(kp/n) = \alpha k/n$ for $k, n \in \mathbb{N}$ and $0 < k \leq n$. We claim that $h(rp) = r\alpha$ for every $0 \leq r \leq 1$ otherwise the function $[0,1] \rightarrow \mathbb{R}^+$, $r \mapsto h(rp)$ is discontinuous. Suppose that ρ is irrational with 0 <
ho < 1 and h(
ho p) =
ho eta for $\beta \neq \alpha$. Then $h(r\rho p) = r\rho\beta$ for $r \in \mathbb{Q}$ with $r\rho < 1$.

There are rationals $r_n < \rho$ with $r_n \rightarrow \rho$ when $n \rightarrow \infty$, so that $h(\rho p) - h(r_n p) = \rho \beta - r_n \alpha \rightarrow \rho(\beta - \alpha) \neq 0$ as $n \rightarrow \infty$.

Fix M > 0. For large n, we have $h(\rho p) - h(r_n p) > M(\rho - r_n) > 0$. But by the log-condition we have $h((\rho - r_n)p) = h(\rho p) - h(r_n p) > M(\rho - r_n)$.

Take $k \in \mathbb{N}$ with $\frac{1}{2} < k(\rho - r_n) \le 1$, so that we have, $h(k(\rho - r, n)) = k(h(\rho - n) - h(r, n))$

$$n(\kappa(\rho - r_n p)) = \kappa(n(\rho p) - n(r_n p))$$

>
$$Mk(\rho - r_n) > \frac{1}{2}M,$$

so that the function h is not bounded. But this is a contradiction, because elements of $V_S^*(p)$ must be bounded. Thus $\dim V_S^*(p) = 1$ for $0 and there is no non-zero function <math>h \in V_S^*(p)$ with h(p) = 0. The function $g_p \in V_S^*(p)$ with $g_p(p) = 1$ is $g_p(x) = x/p$ for all $x \in V_S(p)$.

Now we shall prove that there is no non-zero, bounded, sensible function φ on any equivalence class $C_{(a,b)}$. We first claim that

 $C_{(a,b)} = \{(\alpha,\beta): \alpha + \beta = a + b\},\$ with $a + b \ge 1$. For say $\alpha < a$, we have $a = \alpha \bigoplus (a - \alpha)$ so

that $(\alpha \oplus (a - \alpha), b) \sim (\alpha, b + a - \alpha)$

Similarly for $\beta < b$. But the relation \sim cannot relate pairs (a, b) and (c, d) with $a + b \neq c + d$. So take $\alpha_1, \alpha_2, \beta \in S$ such that $\alpha = \alpha_1 + \alpha_2$ and $\alpha + \beta = a + b$ so that we have

$$\varphi(\alpha_{1},\beta + \alpha_{2}) = g_{\alpha}(\alpha_{1}) \cdot \varphi(\alpha,\beta)$$

$$= \frac{\alpha_{1}}{\alpha} \cdot \varphi(\alpha,\beta), (\text{IV.1})$$
on the other hand we have
$$\varphi(\alpha,\beta) = -\varphi(\beta,\alpha) = -\varphi(\beta,\alpha_{1} + \alpha_{2})$$

$$= -g_{\alpha_{2}+\beta}(\beta) \cdot \varphi(\alpha_{2} + \beta,\alpha_{1})$$

$$= \beta/(\alpha_{2} + \beta) \cdot \varphi(\alpha_{1},\alpha_{2} + \beta). \quad (\text{IV.2})$$

If φ is non-zero, choose α, β such that $\varphi(\alpha, \beta) \neq 0$ and by comparing (IV.1) and (IV.2) we must have $\beta/(\alpha_2 + \beta) = \alpha/\alpha_1$ for every

 $\alpha = \alpha_1 + \alpha_2$; but the equation $\beta/(\alpha - \alpha_1 + \beta) = \alpha/\alpha_1$ is not true for all values of α_1 . Therefore, there is no non-zero bounded sensible function φ , and by [3, Proposition 2.3], the semigroup algebra $\mathcal{A} = \ell^1(S)$ is cyclic weakly amenable.

Example IV.2

Let
$$A \subseteq \mathbb{C}$$
 be the subset
 $\{0\} \cup \{a + \iota b \in \mathbb{C} : 0 < a < 1\}$. Suppose
that $S = A \cup \{\theta\}$ such that
 $S \bigoplus \theta = \theta \bigoplus S = \theta$

and for each $Z, w \in A$ we have

$$z \bigoplus w = \begin{cases} z+w & \text{if } z+w \in A \\ \theta & \text{if } z+w \notin A. \end{cases}$$
(IV.3)

Indeed, the identity of S is 0 and the zero element is θ . Then we claim that S is an infinite, commutative, 0-cancellative *nil*[#]-semigroup, and the semigroup algebra $\mathcal{A} = \ell^1(S)$ is cyclic weakly amenable but not weakly amenable.

To show that \mathcal{A} is not weakly amenable take $z \in A$ and define the function g to be the real-part function, so that $g(w) = \Re(w)$ for all $w \in V_S(z)$. We have $V_S(z) = \{w \in S : z \in wS\} =$ $\{a + \iota b : 0 < a < \Re(z)\},$

(so that the identity function is not bounded on $V_S(Z)$). For $u, v \in A$ with $\Re(u) + \Re(v) < 1$ we have $\theta \neq uv \in V_S(Z)$ and $g(u \oplus v) = \Re(u) + \Re(v) = g(u) + g(v)$.

Thus $g \neq 0 \in V_{S}^{*}(z)$. By [2, Theorem 1.1] we see that \mathcal{A} is not weakly amenable.

Since the identity function is not bounded on the set A, for $z \in A$ the linear space $V_S^*(z)$ does not contain the identity function. We claim that $V_S^*(z)$ is all complex multiples of the function $g(w) = \Re(w)$ ($w \in A$).

For if we have $w \in V_S(z)$, so that $\Re(w) < \Re(z)$ or w = z. We claim that for $g \in V_S^*(z)$ we have

$$g(w) = g(w + \iota \lambda) \quad (w \in V_S(z)).$$

Now for all $w \in V_{\mathcal{S}}(z)$, and for some $\lambda \in \mathbb{R}$, we see that

$$g\left(\frac{w}{2}+\iota\frac{\lambda}{2}\right)+g\left(\frac{w}{2}-\iota\frac{\lambda}{2}\right)=g(w),$$

also

$$2g\left(\frac{w}{2}+\iota\frac{\lambda}{2}\right)=g(w+\iota\lambda) \quad and \quad 2g\left(\frac{w}{2}-\iota\frac{\lambda}{2}\right)=g(w-\iota\lambda),$$

so that

$$g(w) = \frac{1}{2}(g(w + \iota \lambda) + g(w - \iota \lambda)),$$

or
$$g(w + \iota \lambda) = \frac{1}{2}(g(w + 2\iota \lambda) + g(w)),$$

hence
$$g(w + \iota 2\lambda) = 2g(w + \iota \lambda) - g(w).$$

Thus

$$g(w + \iota 3\lambda) = 2g(w + 2\iota \lambda) - g(w + \iota \lambda) = 3g(w + \iota \lambda) - 2g(w),$$

and similarly for
$$n \in \mathbb{N}$$
, we have
 $g(w + \iota n\lambda) = ng(w + \iota \lambda) - (n - 1)g(w)$,

so that

$$g(w+\iota n\lambda) - g(w) = n(g(w+\iota \lambda) - g(w)).$$

By induction, for
$$n \in \mathbb{N}$$
 we see that
 $g(w + \iota n\lambda) = g(w) + n(g(w + \iota \lambda) - g(w))$

for all $w \in V_S(z)$, so we have $g(w + \iota \lambda) = g(w)$ (otherwise g is not bounded). Also we claim that $g(\frac{mz}{n}) = \frac{m}{n}g(z)$ for all $m \le n$ in \mathbb{N} ; once again we must have $g(\alpha z) = \alpha g(z)$ for all $0 < \alpha < 1$ otherwise g will not be bounded. Then if $k = \frac{g(z)}{\Re(z)} \in \mathbb{C}$, we have for $0 < \alpha < 1$,

$$g(\alpha z + \iota \lambda) = g(\alpha z) = \alpha g(z) = \alpha k \Re(z) = k \Re(\alpha z + \iota \lambda).$$

Thus $V_S^*(Z)$ consists of multiples of the function $g(w) = \Re(w)$ for each $w \in V_S(Z)$ and $g_z(w) = \frac{\Re(w)}{\Re(z)}$.

To prove that \mathcal{A} is cyclic weakly amenable we seek to show that there is no non-zero bounded sensible function φ on any equivalence class $C_{(a,b)}$. We *claim* that

 $C_{(a,b)} = \{ (\alpha,\beta) : \alpha, \beta \in A \text{ and } \alpha + \beta = a + b \}.$

For once cannot have $(a, b) \sim (a', b')$ without a + b = a' + b'. Conversely, if $(\alpha, \beta) \in M_o^$ $a + b = \alpha + \beta$ with we claim that $(\alpha,\beta) \in C_{(a,b)}$. Given $\epsilon > 0$ with $\Re(b) + \epsilon < 1$, and $(a,b) \sim (\Re(a) - \epsilon, \Re(b) + \epsilon)$. Certainly, $(a,b) \sim (b,a)$ so that $C_{(a,b)} = C_{(a-\epsilon,b+\epsilon)}$, so we can assume that $\Re(a) \neq \Re(\alpha)$. If $\Re(\alpha) > \Re(\alpha)$ $\alpha | a$ S then in $a = \alpha + (\alpha - \alpha)$ for $a, a - \alpha \in A$ so that $(a,b) \sim (\alpha, b + a - \alpha) = (\alpha, \beta).$

Similarly, if $\Re(a) < \Re(\alpha)$ we have $(a, b) \sim (\alpha, \beta)$ also. Suppose that φ is a sensible function, so that $\varphi(\frac{a+b}{2}, \frac{a+b}{2}) = 0$. If c + d = a + b then either we have $\Re(c) \leq \Re(\frac{a+b}{2})$ or $\Re(d) \leq \Re(\frac{a+b}{2})$, so we may assume that $\Re(c) \leq \Re(\frac{a+b}{2})$ and $\Re(\frac{c}{3}) < \Re(\frac{a+b}{2})$, so $\frac{c}{3} \mid \frac{a+b}{2}$ in S, and $\varphi(c, d) = 3\varphi(\frac{c}{3}, d + \frac{2c}{3}) =$ $3g_{\frac{a+b}{2}}(\frac{c}{3})\varphi(\frac{a+b}{2}, \frac{a+b}{2}) = 0$.

Thus the semigroup algebra $\mathcal{A} = \ell^1(S)$ is cyclic weakly amenable but not weakly amenable.

REFERENCES

- H. G. Dales, *Banach algebras and automatic continuity*, London Math. Soc. Monographs, Volume 24, Clarendon press, Oxford, 2000.
- [2] Hussein M. Ghlaio and Charles J. Read, Irregular abelian semigroups with weakly amenable semigroup algebra, *Semigroup Forum*, 82 (2011), 367-383.
- [3] Hussein M. Ghlaio, Cyclic weak amenability of some commutative semigroup algebras, *Journal of Science*, Vol.(07) August 2018, 35-38.