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Abstract
Searching for frequent patterns in datasets is one of the most important data mining issue.
The development of fast and efficient algorithms that can handle large amounts of data

becomes a difficult task because of high volume of databases.

The Apriori algorithm is one of the most common and widely used data extraction
algorithms. Many algorithms have now been proposed on parallel and distributed
platforms to improve the performance of the Apriori algorithm in big data. The problems
in most of the distributed framework are the overhead of distributed system management
and the lack of a high-level parallel programming language. Also with retinal computing,
there are always potential opportunities for node failure that causes multiple re-execution

of tasks. These problems can be overcomes through the MapReduce framework.

Most of MapReduce implementations were focused on the technique of MapReduce for
Apriori algorithm design. In our thesis the focus is on the size of dataset and the capacity
of the Hadoop HDFS, how much the Hadoop system can process simultaneous. Our
proposal system Partitioned MapReduce Apriori algorithm (PMRA), aims to solve the
latency and even provide solution for small companies or organizations whom want to

process their data locally for security or cost reasons.

All of these reasons encourage us to propose this solution trying to solve previous
problems. The basic idea behind this research is applying Apriori algorithm using Hadoop
MapReduce on a divided dataset, and comparing the results with the same process and

dataset performed using Traditional Apriori algorithm.

The obtained results show that, the proposed approach arrive a solution for big data

analysis using Apriori algorithm in distributed system by utilize a pre-decision-making.
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Chapter One

Introduction
This chapter contains the following subsections: Introduction to big data creation,
sources of big data, big data definitions, challenges and opportunities, big data mining,
distributes and parallel systems, Hadoop eco-system and problem statement, declaration
the major aims of the research by develop a modified approach model to implement

Apriori algorithm using MapReduce and evaluation method .

1.1. Background

The amount of data that is generated and stored at the global level is almost
inconceivable, and it continues to grow rapidly. This means that there are more
potentials for extracting key insights from business information, but only a small
fraction of the data is actually analyzed.

Nowadays, the amount of data generated every two days is estimated at five
Exabyte's. This quantity of data is similar to the amount of data generated from the
dawn of time until 2003. In addition, it was appreciated that 2007 was the first year
in which all the data we produce could not be stored. This huge amount of data opens
new difficult discovery tasks [1].

The use of data today changes the way we live, work and play. Companies in
industries around the world use data to transform themselves into more flexible,
improve customer experience, introduce new business models, and develop new
sources of competitive advantage. Consumers live in an increasingly digital world,
relying on internet and mobile channels to connect with friends and family, access
goods and services, and run almost every aspect of their lives, even while they sleep.

Much of today's economy is data-driven, and this reliance will only increase in the



1.2,

future as companies capture, index and criticize data at every step of their supply
chain; Social media, entertainment, cloud storage and real-time personal services in
the streams of their lives. The result of this increased reliance on data will be an
endless expansion of the global DataSphere. Estimated to be 33 ZB in 2018, IDC

expects Global DataSphere to grow to 175 ZB by 2025 [2].
Annual Size of the Global Datasphere

Annual Size of the Global Datasphere 175 ZB

Figure 1.1 Annual Size of the Global DataSphere. (Source: [2])

Data progression

Traditional database systems are based on structured data. Traditional data is stored
in a fixed form or in fields in a file. Examples of structural data including the relational
database system (RDBMS, which answer only questions about what happened. The
traditional database only provide an idea of a small-scale problem. However, the
unstructured metadata used in order to improve and reinforce the ability of an
organization to acquisition more insight into the data and also to learn the information

[3]. Large (Big) data uses both semi-structured and unstructured data and improves



the diversity (variety) of data collected from different sources such as customers, the
public or subscribers [4].

The traditional source of data was personal files, documents, finances, stock records
and so on, which entered and stored by workers from the begging of computer
technologies until the earlier decade of internet. And with new technologies such as
social media, the data starts to come from users. Furthermore, in the last decade the
machines start accumulating data (mobile networks, cameras, GPS, scanners, sensors,

satellite monitoring, IOT ... i.e.).

1.3. Big data definition

From that large amount of data comes new terms, one of them is big data. Big data
has several definitions from several groups work on it. One of these groups focuses
on the inclusion of their characteristics. When presenting the challenges of data
management faced by companies in response to the rise of e-commerce in early
2000’s, Doug Laney provided a framework reflecting the three-dimensional increase
in data: Volume, Velocity and Variety. The need to draw a new practices involving
the "tradeoffs" and architectural solutions that impact application decisions and
business strategy decisions [5].

Although this definition did not explicitly mention big data, later the form definition
of big data known as " the 3 Vs. ", was linked to the concept of big data and used to

define it [6].

Another definition, big data is a collection of datasets with sizes beyond the ability of
commonly used software tools to capture, mine, manage and process data within a
reasonable time. Big data requires a range of techniques and technologies with new

forms of integration to discover complex and large-scale insights from datasets. As of



2012, approximately 2.5 Exabyte’s of data are created every day, and this figure
doubles almost every 40 months [7]. More data over the internet every second of the
internet was stored just 20 years ago. This gives companies a chance to work with

many data Petabytes in a single dataset and not just from the Internet.

For example, it estimated that Walmart collects more than 2.5 petabytes of data every
hour of customer transactions. A Petabyte is one of quadrillion bytes, or equivalent to

about 20 million text storage files. An Exabyte is 1,000 times that amount, or a billion

gigabytes. [7].

Gartner [8] defines big data as, "Big data is high volume, high velocity, and/or high
variety information assets that require new forms of processing to enhance decision
making, insight discovery and process optimization. "The 3 Vs. definition of Gartner
is still widely used and is in agreement with a consensual definition that states that

"Big Data represents the Information assets characterized by such a High Volume,

Velocity and Variety to require specific Technology and Analytical Methods for its

transformation into Value"[8].

The 3Vs has been expanded to other complementary characteristics of big data:
Volume: Which means the size of the data. Volume is the V most closely associated with
large data, because the volume can be large. The amount of data generated and stored.
What we are talking about here is the amount of data that reaches almost
incomprehensible proportions. The size of the data determines the potential value and

insight whether the data can be considered large or not.

Velocity: Which means speed. Big data is often available in real-time. For many
applications, the speed of data creation is more important than size. Actual real-time

information allows the company to be more agile than its competitors [7].



Variety: Means diversity, big data draws from text, images, audio, and video. In addition
they complement the lost pieces by merging data, in other word it completes missing
pieces through data fusion[9].

As we have mentioned earlier, big data has multiple definitions, with the progression in
big data, the new dimensions become important and widely used. The importance of the
information quality (IQ), with calls for the characterization of large data not only along
the three dimensions specified, it has been recently recognized and is called "Vs., volume,

variety and velocity, but also along the fourth dimension "V": veracity [10].

Veracity: is the quality of data captured that can vary dramatically and greatly, which
affects the accurate careful analysis.

Big data contains many different types of organized structured and non-structured data.
Structured data is well defined and can normally be represented as numbers or categories:
for example, your income, your age, your gender, and marital status. Unstructured data is
not well-defined. It is often difficult to categorize and categorize texts: for example e-

mails, blogs, web pages, and transcripts of phone [11].

1.4. Big data Challenges

Anyhow, the importance of big data is not about how much data we have, but what can
we do with it. You can take any kind of data from any source and analyze them to find
answers that enable you to reduce costs and time, develop new products and offers
improve make smart decisions. When you merge large data with high performance
analytics, you can accomplish business-related tasks such as:

¢ Identify the root causes of failures issues and flaws in almost real time.

e [Establishment of voucher at the point of sale based on customer's purchase habits.

e Fully recalculate the risk portfolio in minutes.



1.5.

1.6.

Detecting fraudulent behavior before it affects your organization.

Big data mining

This type of data analysis called Data Mining. It is a way to get undiscovered patterns
or facts from a massive huge amount of data in the database. Data mining also known
as a one-step in the Knowledge discovery in Databases (KDD). The need for data
mining is increased as it helps to reduce cost and increase profits [12]. Data mining is
the effective detection of previously unknown patterns in large datasets [13].

Apriori algorithm 1s one of the most common algorithms in data mining to learn the
concept of association rules. It used by many people specifically for transaction
operations, and can be used in real-time applications (for example, shop grocery,
public store, library, etc.) by collecting the materials purchased by customers over
time.

Apriori algorithm is very widely used in data mining application, it has some
limitations. It is costly expensive to deal with a large number of candidate sets. It
exhausted to scan the database frequently and check the large selection of candidates
by matching the pattern, which is especially true for long mining patterns. The Apriori
algorithm in general has two major deficiencies. First, you need to scan the database

repeatedly and second you need to generate a large number of candidate item set [13].

Parallel and distributed computing

Unfortunately, in parallel and distributed computing, when the size of a dataset is
huge, the memory usage and computational cost can be extremely expensive. In
addition, single processor’s memory and CPU resources are very limited, which make
the Apriori algorithm performance inefficient. Parallel and distributed computing are

effective strategies to speed up the performance of algorithms. Parallel and distributed



computing offer a potential solution for the above problems if the efficient and
scalable parallel and distributed algorithm can be implemented. Such easy and
efficient implementation can be achieved by using Hadoop-MapReduce model[14].

Consider Hadoop as a set of open source programs and procedures (that is, anyone
can use or modify, with some exceptions) that anyone can use as backbone for large
data operations.

Hadoop is not a type of database, but rather a software ecosystem that allows for
massively parallel computing. It is enabled for certain types of distributed NoSQL
databases (such as HBase), which can allow the spread data across thousands of
servers with a slight decrease in performance. There are four units of Hadoop, each
of which performs a specific task that is necessary for a computer system designed
for large data analytics. These modules are, Distributed File-System, MapReduce,
Hadoop Common and YARN.

MapReduce is named after the two basic operations this module carries out, reading
data from the database, putting it into a format suitable for analysis, and performing
mathematical operations [15].

Hadoop- MapReduce is a programming model for easy and efficient writing
applications, which handles process of a huge amount of data (terabytes or more
datasets) in parallel with large clusters of commodity devices in a reliable manner,
and fault tolerance. The MapReduce (Task or Job) program partitions (separate) the
input dataset into independent partitions, which are processed by map tasks (the Map
task for each division) in a completely parallel way. Hadoop framework combines
map output and stores it as a set of intermediate key/values pairs that are then fetched
as a gateway to reduce tasks [15]. Figure 1.2 shows the Hadoop-MapReduce

architecture.
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Figure 1.2. Hadoop MapReduce Architecture. (Source: [16]).

1.7. Distributed database

Distributed database system technology (DDBS) is a union of what appears to be have
two diametrically opposed approaches to data processing: the database system and
computer network technologies. Database systems have taken us from a model processing
data in which each application selects and maintains its own data to one where data is
centrally defined and managed. This new trend leads to data independence, where the
application programs are immune to changes in the logical or physical organization of
data, the opposite is true. One of the main motives behind the use of database systems is
desire to integrate the operational data of the enterprise and provide centralized, and thus
access controls that data. Computer networking technology, on the other hand it promotes
a work mode that runs counter to all central efforts. At first glance it might be difficult to
understand how these two contrasting approaches can possibly be synthesized to produce

a technology that is more powerful and more promising than either one alone [17].



1.8. NoSQL and Big data

NoSQL usually used to store big data. This is a new type of database, which has become
more and more popular among the internet companies today.

Types of NoSQL databases:

A key-value store (also known as a key-value database and key-value store database),
which is the simplest type of NoSQL databases. Each item in the database is stored as an
attribute name (or "key ") with its value. The most famous databases in this category are
Riak, Voldemort, and Redis.

The Wide column stores data together as columns rather than rows and are optimized for
queries across larger datasets. The most popular database in this type are Cassandra and
HBase.

Graph databases which is used to store information about networks, such as social
connections. Examples are Neo4J and HyperGraphDB

Document databases which associate each key with a complex data structure that is
known as a document name. Documents can contain many different key-value pairs, key-
array pairs, or even nested documents. MongoDB is the most common of these databases.
MongoDB is the most popular of all NoSQL databases because it maintains of the best
relational database features with the integration of NoSQL.

The main MongoDB features are: it is an Open Source, Replication, Sharding,

Schemaless and Cloud for big data.

In the document database, the database schema idea is dynamic: Each document can
contain different fields. This flexibility can be particularly useful for modeling non-
structured and polymorphic data. It also makes it easy to evolve an application during

development, such as adding new fields. In addition, document databases generally



provide the query power that developers expect from relational databases. Specifically,

you can query data based on any fields in a document [18].

1.9. Problem statement

Parallel and distributed computing can be defined as the use of a distributed system to
solve one big problem by dividing it into several tasks where each task is counted on
individual computers of the distributed system. Hadoop as parallel and distributed system
composed of more than one self-routing computer connected over the network. All
networked computers connect to each other to achieve a popular goal through the use of
their local memory.
From the previous section (1.6) explanation about parallel and distribute computing, we
can conclude some drawbacks about Hadoop as parallel and distributed computing.

1. Slow Processing Speed
In Hadoop, with a parallel and distributed algorithm, MapReduce processes of large
datasets. There are tasks that you need to execute out Map and Reduce, the MapReduce
requires a lot of time to perform these tasks and thus increase latency. To decrease the
time and increase processing speed, the data will distributed and processed through the
group in MapReduce.

2. No Real-time Data Processing
Apache Hadoop is designed to handle batch processing, which means it takes a huge
amount of data into the input, processing and producing the result. Although batch
processing is very effective to handle a high amount of data, it depending on the size of
the data being processed and the computational power of the system, their output can be
significantly delayed. As a conclusion, Hadoop is not suitable for data processing in the

real time.
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3. Latency
In Hadoop, the MapReduce framework is relatively slower, because it designed to support
a different format, structure and large volume of data. MapReduce requires a lot of time
to perform these tasks and thus increase latency.

4. Security
Some organizations have security restrictions to process data on the cloud systems, and
the local system capacity can not handle processing data in reasonable time. In addition,
the high cost of buying and maintaining powerful software, servers and storage hardware
that handle the processing of large amounts of data, prevents them to gain benefits from
data analysis.
As a result, we need new approaches of data analysis helping in saving time, reducing

hardware and software cost.

1.10. Motivation

Agrawal and Srikant proposed the Apriori algorithm in 1994. One of common use of it is
market basket analysis. MapReduce designed at Google for use with web indexing
technologies. Many approaches implemented in applying Apriori algorithm using
Hadoop MapReduce each of which present from different perspective. The proposed
approach suggest a new method to apply Apriori algorithm in big data using parallel and

distributed computing.

1.11. Aim an objectives

The proposed research aims to develop a modified approach to implement Apriori
algorithm using MapReduce. To achieve this aims, the following objectives are specified:

1. Investigate the current state of the art of big data issues and developments.
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2. Develop a modified approach to implement Apriori algorithm using MapReduce
to save time and reduce hardware cost in processing data by getting a pre-result
that will help to make pre-decisions.

3. Evaluate the proposed implementation approach by applying Traditional Apriori
algorithm at the same dataset without MapReduce and comparing the results and

processing time.

1.12. Structure of the Thesis

The remaining chapters of this thesis are organized as follows:
Chapter 2 discusses several research papers implantations improving Apriori algorithm
using Hadoop/MapReduce, and different design implementation.
Chapter 3 describes the methodology of the proposed approach for applying new method
in Apriori algorithm using Hadoop MapReduce.
Chapter 4 explores the details of the implementation of for testing the proposed approach.
Chapter 5 the proposed experiments results and evaluating are presented.
Chapter 6 concludes the thesis, it summarizes the observation made through the project

and suggest some future avenue research directions.
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Chapter Two

Literature Review
241, Introduction
In this chapter, we provide an overview of approaches related to the main topic of this
thesis. The first section presents the Apriori algorithm for association rule mining and the
improvements that have been done to improve the performance of Apriori algorithm. The
second section includes related works using MapReduce as a parallel programming model

that is used to manipulate data across large datasets using Apriori algorithm.

Today, huge amounts of data are being collected in many areas, creating new
opportunities for understanding meteorological, health, financing and many other sectors.
Big data are valuable assets for companies, organizations and even governments.
Converting this large data into real treasures requires the support of large data systems
and platforms. However, the large volume of big data requires large storage capacity,
bandwidth, calculation, and energy consumption. It is expected that unprecedented
systems can solve problems arising from items of big data with huge amounts.

Complexity, diversity, often-changing workloads and the rapid development of large
data systems pose significant challenges in measuring large data. Without large data
standards, it is very difficult for large data owners to decide on which system is best to
meet their specific requirements. In addition, they face challenges on how to enhance
systems and their solutions to certain or until inclusive workload.

At the same time, researchers are also working on innovative data management
systems, hardware architecture, operating systems, and programming systems to improve
performance of handling big data.

Data mining means data extraction. It is refers to the activity through large datasets

searching for relevant or related information. The idea is that companies collect huge sets
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of data that may be homogeneous or automatically collected. Decision makers need to
obtain smaller, more specific data from these large groups. They use data mining to
uncover a piece of information that will help to drive and assist in charting a course for
business. Big data contain a huge amount of data and information and are worth searching
in depth. Large data, also known as massive data or collective data, indicate the amount
of data involved is too large to be interpreted by human. Currently appropriate
technologies are available including data mining, data fusion and integration, machine
learning, natural language processing, simulation, time series analysis, and visualization.
It is important to find new ways to enhance the effectiveness of big data analysis. With
large data analysis solutions and intelligent computing techniques, we face new
challenges to make information transparent and understandable.

Frequent sets groups play a key role in many Data Mining tasks that attempt to find
interesting patterns of databases, such as association rules, correlations, sequences, loops,
classifications, and clusters. The mining of association rules is one of the most common
problems of all these Data Mining tasks. Identifying sets of items, products, symptoms,
and properties, which often occur together in the selected database, can considered as one
of the basic tasks in Data Mining.

The original motiving was to search for repeated (frequent) sets from the need to
analyze the so-called supermarket transaction data, which is to examine the behavior of
customers in terms of purchased products [19]. Frequent sets of products describe how
often items are purchased together.

The important of discovering, detection, figure out and explore all frequent sets is
extremely difficult. The search area is rapid and exponential in the total of items that

occurrence in the database and the targeted databases tempted to be large, and contain
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millions of transactions. Each of these features makes the endeavor to search for the most
efficiently and powerful techniques to resolve this task.

2.2, The Apriori algorithm

Apriori algorithm is one of the main algorithms for generating frequent itemsets. The
analysis of frequent itemset is a critical step in the analysis of structured data and in the
creation of correlation between itemset. This stands as the primary basis for learning
under supervised learning, which includes the classifier and feature extraction methods.
Applying this algorithm is critical to understanding the behavior of structured data. Most

of the data organized in the scientific field is voluminous data.

The processing of this type of huge data requires modern computer hardware. The
establishment of such infrastructure is costly. You then need to use a distributed
environment such as a clustered setting to handle such scenarios. The distribution of
Hadoop MapReduce is one of the cluster frameworks in the distributed environment that

helps in distributing huge data across a number of nodes in the frame.

With the introduction of the frequent itemset mining problem, also the first algorithm to
solve it was proposed, later denoted as AIS. Shortly after that the algorithm was improved
by R. Agrawal and R Srikant [20], and called Apriori. It is a seminal algorithm, which
uses an iterative approach known as a level-wise search, where k-itemsets are used to
explore (k+1)-itemsets.
2:3. Improvements the efficiency of Apriori

Many discrepancy of the Apriori algorithm have proposed that concentrate on
improving the performance of the original Apriori algorithm. Several of these

improvements are summarize as follows:
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2.3.1. Hash-based

This method attempts to generate large itemsets efficiently and reduces the
transaction database size. When generating L/ (LI: First frequent itemset), the
algorithm also generates all of the 2-itemsets for each transaction, hashes them to
a hash table and keeps a count. As example, when scanning each transaction in
the database to generate the frequent 1-itemsets, L/, from the candidate 1-itemsets
in CI (CI: candidate itemset), we can generate all of the 2-itemsets for each
transaction, hash them into different buckets of a hash table structure and increase
the corresponding bucket counts.

The storage data structure in this method is an array and it is suitable for medium

size databases. The algorithm was proposed by [21].

2.3.2. Transaction reduction

A transaction that does not contain any frequent itemsets cannot contain any
frequent k+ / itemsets. Therefore, such a transaction can be marked or removed
from further consideration because subsequent scans of the database for j-
itemsets, where j> k, will not require it.

The storage data structure in this method is an array and it is Suitable for small

and medium size databases. The algorithm was proposed by [22].

2.3.3. Partitioning

Partitioning the data to find candidate itemsets. A partitioning technique can be
used since it requires just two database scans to mine the frequent itemsets. It
consists of two phases. First one, the set of transactions may be divided into a
number of disjoint subsets. Then, each partition is searched for frequent itemsets.

These frequent itemsets called local frequent itemsets. The storage data structure
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in this method is an array and it is more suitable for huge-size databases.
Algorithm was proposed by [23].

2.3.4. Sampling

Sampling refers to mining on a subset of a given data. A random sample (usually
large enough to fit in the main memory) may be obtained from the overall set of
transactions, and the sample is searching for frequent itemset. The essential
concept of the sampling approach is to select a random sample S of the given data
D, and therefore search for frequent itemsets in S instead of D. That way, we swap
a certain degree of precision against efficiency. The size of the sample S must be
convenient that you can perform a search for frequent items in the S in the main
memory. Because we are looking for repetitive elements (frequent items) in §
instead of D, it is probable that we will miss some of the frequent global elements.
To reduce this capability, we use a support threshold below the minimum support
to find the local elements that are frequent to S.

The storage data structure in this method is an array and it is right fit for all sizes
of database. Algorithm was proposed by [24].

2.3.5. Dynamic itemset counting

This method adds the candidate items in different points during the scan
procedure. The dynamic method of counting items was suggest in the database
being split into marked blocks with starting points. In this format, new candidate
itemsets can be added at any starting point, which identify the new candidate only
directly before each scan of a complete database. The resulting algorithm requires
that you scan a database that is less than Apriori algorithm.

The storage data structure in this method is an array and it is appropriate for small

and medium size databases. The algorithm was proposed by [25].
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2.3.6. ECLAT ALGORITHM
Eclat algorithm is a depth first search based algorithm. It uses a vertical database
layout instance of a horizontal layout, i.e., instead of inserting all transactions
explicitly, each item is stored with its cover (also called Tidlist), and the
intersection-based approach is used to calculate the support of an itemset.
The storage data structure in this method is an array and it is suitable for medium
size and dense datasets but not small size datasets. The algorithm was proposed
by [26].
2.4, Related Works Using Hadoop MapReduce
Many different implementations of the MapReduce interface are possible. The right
choice depends on the environment. For example, one implementation might be a suitable
for a small-shared memory machine, another for a large multi-processor, another for a

larger set of network machines.

2.4.1. Parallel implementation of Apriori algorithm based on MapReduce
In study [27], the authors implemented a parallel Apriori algorithm in the context of the
MapReduce paradigm. MapReduce is a framework to parallel data processing in a high

performing cluster- computing environment.

The parallel implementation of Apriori algorithm based on MapReduce framework was

suggest for processing enormous datasets using a large number of computers.

The authors proposed a k-phase parallel Apriori algorithm based on MapReduce. It needs
k scans (MapReduce jobs) to find k-frequent items. The algorithm uses two different map
functions: one for the first phase and one for rest of the phases. Although the algorithm
was successful in finding the k-frequent itemsets using the parallel method, it has a
massive amount of reading frequent Itemsets in the previous phase each time of HDFS.
The principals of the Apriori algorithm parallel in the MapReduce framework is the
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design of the map and reduce the functions of the candidate generation and counting

support.

Each mapper calculates each candidate's accounts from its own partition, and then each
candidate is ejected and the corresponding number. After the map phase, the candidates
are collected, enumerated and grouped in the reduce phase to get partial frequent Itemsets.
By using count, distribution between map phase and reduce phase, the communication
cost can be decreased as much as possible. Since frequent 1-itemsets has been found in
the pass-1 by simple counting of items. Phase-1 of the algorithms are the straight forward.
The mapper outputs <item, 1> pair’s for each item contained in the transaction. The
reducer assemble each enumeration of support for an element, and pairs <item, count> as
frequent 1-itemset to L1, when the number is greater than the minimum support. The k-
itemsets are passed as an input to the mapper function and the mapper outputs <item, 1>,
then the reducer collects all the support counts of an item and outputs the <item, count>
pairs as a frequent k-itemset to the Lk. Figure (2.1) shows the flow chart of the parallel

Apriori algorithm.
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Figure 2.1: The flow chart of the parallel Apriori algorithm
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So one-phase class; the algorithm needs only one phase (MapReduce job) to find
all frequent k-itemsets, it sounds so good, easy to implement, but its execution time is
very slow and its performance is inefficient. In k-phases class (k is maximum length of
frequent itemsets), the algorithm needs k phases (MapReduce jobs) to find all frequent k-
itemsets, phase one to find frequent 1-itemset, phase two to find frequent 2-itemset, and

SO on.

In this study, they used the transactional data for an all-electronics branch and the
T1014D100K dataset. They replicated it to obtain 1 GB, 2 GB, 4 GB, and 8§ GB. For the
T1014D100K dataset, they have replicated it into 2 times, 4 times, and 8 times and got 0.6
GB, 1.2 GB and 2.4 GB datasets, respectively. They denoted those datasets as
T1014D200K, T1014D400K and T1014D800K. Additionally; they used some transactional

logs from a telecommunication company.

The experimental results show that the program is more efficient with the size of the
database increasing. Therefore, the proposed algorithm can effectively handle large

datasets on commodity devices.

2.4.2. An improved Apriori algorithm based on the Boolean matrix and Hadoop

In other study [28], the researchers proved their improved Apriori algorithm on a
theoretical basis. First, they replace the transaction dataset using the Boolean matrix array,
by this method, non-frequent item sets can be removed from the matrix, and there is no
need to repeatedly scan the original database. You only need to work on the Boolean
matrix using the vector "AND" operation and the random access properties of the matrix
so that it can be generated directly the k- frequent itemsets. The objectives of this study
were to find the base frequent itemsets and association rule in transaction database with

min_sup and min_conf pre-defined user on the Hadoop-MapReduce framework.
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Typically, the standard Apriori algorithm has many challenges to discovering the frequent

itemsets of a massive dataset efficiently and quickly.

We can follow their proposed system form the tables (1, 2, 3, and 4):

1. First the transaction database’s data format 1s vertical data format as table 1.
2. Table 2 is the Boolean expression of the transaction database.

3. Intable 3, there are three frequent 1-items 10, I1, and 12.

>

Table 4 the two blocks blockl and blocks block?2.

Table 1: vertical data Table 2: Boolean Matrix of transaction database
format of transactions

Item TID Item T1 T2 T3 T4 | Support
10 T1, T2, T4 10 1 1 0 1 3
11 T1, T2, T4 1 1 1 0 I 3
12 T1, T2, T3 12 1 1 1 0 3
I3 T3 13 0 0 1 0 1
14 T1, T4 14 1 0 0 1 2

Assume the minsup = 3. It deletes the items whose support is less than the minsup in the

Boolean matrix. Table 3 is the new Boolean matrix.

Table 3: The New Boolean Matrix

Item T1 T2 T3 T4 Support
10 1 1 0 1 3
I1 1 1 0 1 3
12 1 1 1 0 3
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Table 4: The two blocks _block1 and blocks block?2

Item T1 T2 Item T3 T4 Support
10 1 1 10 0 1 3
11 1 1 And I1 0 1 3
12 1 1 2 1 0 3
13 0 0 I3 1 0 1
14 1 0 14 0 1 2

A Boolean matrix is used to replace the transaction database, so non-recurring item
groups can be removed from the matrix. It does not need to scan the original database, it
just needs to work on The Boolean matrix that uses the vector operation "AND" and the
array random access properties so that it can create k-frequent item sets. The algorithm 1s
implemented on the Hadoop platform, and thus can significantly increase the efficiency

of the algorithm.

2.4.3. Implementation of parallel Apriori algorithm on Hadoop cluster

In [29], the authors extracted frequent patterns among itemsets in the transaction
databases and other repositories reported that Apriori algorithms have a great impact to
find repetitive materials using the candidate generation. The Apache Hadoop software
framework relies on the MapReduce programming model to enhance the processing of
large-scale data on a high performance cluster to handle a huge amount of data in parallel
with large scale of computer nodes resulting in reliable, scalable and distributed

computing.

Parallel Apriori algorithm was implemented using Apache Hadoop Framework software
that improves performance. Hadoop is the program's framework for writing applications
that quickly handle huge amounts of data in parallel to large groups of account nodes. Its

work is based on the model of the MapReduce.
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This single node sheet was implemented by the Hadoop cluster that operates based on the
model of the MapReduce. Using this Hadoop cluster, the wordcount example was
performed. This paper [29], also extracts repetitive patterns between a set of elements in
transaction databases or other repositories using the Apriori algorithm in a single node.
The Hadoop cluster can easily paralleled and easy to implement. The extracted frequent
patterns between items in the transaction databases and other repositories, and they
mentioned that the Apriori algorithms have a great impact on finding the Itemsets iterative
using the candidate generation.
The authors have improved the Apriori algorithm implementation with MapReduce
Programming model as shown below:
* Split the transaction database horizontally into n data subsets and distribute them
to ‘m’ nodes.
* Each node scans its own datasets and generates a set of candidate itemsets Cp
* Then, the support count of each candidate itemset is set to one. This candidate
itemset Cp is divided into » partitions and sent to » nodes with their support count.
Nodes 7 successively and respectively accumulate the same number of support
elements to output the final practical support and identify the recurring Lp
elements in the section after comparing with min_sup.
+ Finally merge the output of nodes » to generate a set of frequent global itemset
L.
2.4.4. An Efficient Implementation of A-Priori algorithm based on Hadoop-MapReduce
model
In [14], they presents a new implementation of the Apriori algorithm based on the
Hadoop-MapReduce model where called the MapReduce Apriori algorithm (MR Apriori)

was proposed.
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They implement an effective MapReduce Apriori algorithm based on the Hadoop-
MapReduce model, which only needs two stages to find all the frequent itemsets. They
also compared the new algorithm with two existing algorithms that either need one or K

stages to find the same repetitive elements.

They suggest to use Hadoop Map Reduce programming model for parallel and distributed
computing. It is an effective model for writing easy and effective applications where large
data sets can be processed on collections of nodes computing, this also in a way that is

fault tolerant.

To compare and validate the good performance of the newly proposed two-stage
algorithm with the pre-existing phase / and K-phase scanning algorithms they frequently

changing number of transactions and minimum support.

They have introduced the ability to find all the K-iterative elements within only two stages
of scanning and implementing the entire set of data in the MapReduce Apriori algorithm
on the Hadoop MapReduce model efficiently and effectively compared with phase I

algorithms and K-phase algorithms.

In study [14], the tl014d100k data set was used to obtain the results of the experiment
generated by the IBM's quest synthetic data generator. The total number of transactions
is 100000, and each transaction contains 10 items on average. The complete number of

items is 1000, and the average length of the frequent itemsets is four.

They evaluated the performance of their proposed algorithm (MRApriori) by comparing

the implementation time with the other two existing algorithms (one and K-stages).

In study [14], the author implement the Apriori algorithm on a single device or can say
stand-alone so there is some chance to execute on a multiple node. Three algorithms have

been implemented; MR Apriori and the other exists two algorithms are present (one and
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K stages) based on the Hadoop MapReduce programming model on the platform is
working on a standalone mode and comparing the performance of those algorithms.

Figure 2.4. Shows algorithms Performance with different datasets.
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Figure 2.4. Algorithms Performance with Different Datasets

They claimed that the results showed that: one-phase algorithm is ineffective and not
practical, K- phases is effective algorithm and its implementation time close to their
proposed algorithm. The experiments have been conducted on one machine and the
combination of production records has not moved from a map factor to reduce the
operator over the network. Their proposed algorithm, MR Apriori, efficient and superior

to the other 2 algorithm in all experiments.

The empirical results showed that the proposed Apriori algorithm is effective and exceeds
the other two algorithms. This study provides insight into the implementation of the
Apriori over MapReduce model and suggest a new algorithm called MRApriori

(MapReduce Apriori Algorithm).
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2.4.5. Improving Apriori algorithm to get better performance with cloud computing
The study on [30], claims that Apriori algorithm is a famous algorithm for association
rule mining and that the traditional Apriori algorithm is not suitable for the cloud-
computing model because it was not designed for parallel and distributed computing.
Cloud computing has become a big name in the current era with probability to be main
core of most future technologies. It has been proven that mining techniques implemented
with cloud computing model can be useful for analyzing huge data in the cloud. In study
[30], researchers used the Apriori algorithm for association rules in cloud environments.
So in this study[30], they optimize the Apriori algorithm that is used on the cloud
platform. The current implementations have a drawback that they do not scale linearly as
the number of records increases, and the execution time increases when a higher value of
k-itemsets is required.
The authors try to overcome the above limitations, and they have improved the Apriori
algorithm such that it now has the following features:

1. The linear scale will have a number of records increases.

2. The time taken is proximate of the value K. This is anything K-itemsets running

appears, it will take the same time to given the number of records.
The implementation time of the existing Apriori algorithm increases exponentially with
a decrease in the number of support.
Hence, in order to minimize desired string comparisons and possibly one of the obstacles
in previous implementation processes that do not attempt to get out in two steps, they will
now implement a custom key format that would take the same set as the key instead of
text/string. This will be achieved using the Java Collection library.
The improvement of the Apriori algorithm on Amazon EC2 (Amazon Elastic Compute

Cloud) has been implemented to assess performance. Data entry and application files have

27



been saved on S3 (Amazon Simple Storage Service), which is the data storage service.
Data transfer between Amazon S3 and Amazon EC?2 is free making S3 attractive to users
of the EC2. Output data is also written in S3 buckets at the end. The temporary data is
written in the HDVs files.

Amazon Elastic MapReduce takes care of the provision of the Hadoop cluster, running
the job flow, terminating the job flow, transferring data between Amazon EC2 and
Amazon S3, and optimizing the Hadoop. Amazon command removes most difficulties
associated with configuring Hadoop, such as creating devices and networks required by
The Hadoop group, including the setup monitor, configuration of Hadoop, and the
execution of the job flow.

Hadoop job flows are using the Cloud Service command, EC2 and S3 cloud. To start the
task, a request sent from Host for order. Then, after creating the Hadoop block with the
main instances and the slave. This group is doing everything, treatment in the job.
Temporary files created during task execution and output files are stored on the S3. Once
the task is completed, a message sent to the user.

Cloud computing is the next development of online computing which provides cost
effective solutions for storage and analyze a huge amount of data. Extracting data on a
cloud computing model can greatly benefit us. That is why data extraction technology
implemented on the cloud platform of many of our data extraction techniques

The association rule-mining base used as a data mining technology. The Apriori
algorithm has been improved to fit that for a parallel account platform. Using Amazon
Web Services EC2, §3 and order for cloud computing, the proposed algorithm reduces
the execution time of values less than the support count, the authors did not mention or
explain the algorithm also the result was unclear.

The current implementation processes has some disadvantage that:
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They did not record in writing as the number of records increases.

2. The execution time increases when a value higher than k-itemsets needed.

2.5.

Summary

In this chapter, we presented a review of existing works closely related to proposed

research and identified some drawbacks of existing approaches. From the previous works,

there is a need to work on enhancing the performance of Apriori by implementing it in

parallel using MapReduce.

Here is a review of the previous improved Apriori algorithms on Hadoop-MapReduce.

Ref Methodology Description Storage Dataset

data structure size

[27] | To evaluate the In this study, the Transactional data Large
performance of their | authors implemented | for an all-electronics | dataset
study in terms of a parallel Apriori branch and the
size-up, speedup, algorithm in the T1014D100K
and scale-up to context of the dataset. They
address massive- MapReduce replicated it to obtain
scale datasets. paradigm. 1 GB, 2 Gb, 4 GB,

MapReduce is a and 8 GB.
framework for

parallel data

processing in a high-
performance cluster-

computing

environment.

[28] | Improved Apriori The aims of this Sample Small
algorithm on a study were to find and
theoretical basis. the frequent itemsets mediu
First, they replace and association rule m
the transaction in the transactional dataset
dataset using the database with the
Boolean matrix min_sup and
array. min_conf.

[29] | Improved the Implemented a Word count Small
Apriori algorithm by | revised Apriori Example and
split the transaction | algorithm to extract mediu
database. frequent pattern m

itemsets from dataset
transactional
databases based on
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the Hadoop-
MapReduce
framework. They
used the single-node
Hadoop cluster
mode to evaluate the

performance.

[14] | To compare and They introduced the | Dataset was used to | Mediu
prove the good ability to find all k- | obtain the m and
performance of the frequent itemsets experiment large
newly proposed 2- within only two results generated by | dataset
phase algorithm with | phases of scanning IBM’ s quest
previously existing the entire dataset and | synthetic data
1-phase and k-phase | implemented that in | generator.
scanning algorithms | a MapReduce
repeatedly changing | Apriori algorithm on
the number of the Hadoop-
transaction and MapReduce model
minimum support. efficiently and

effectively compared
with the 1-phase and
k-phase algorithms.

[30] | Traditional Apriori Appling Data mining | INA (Information Large
algorithm is not techniques Not Available) dataset
suitable for the implemented with
cloud-computing the cloud-computing
paradigm because it | paradigm can be
was not designed for | useful for analyzing
parallel and big data in the cloud.
distributed
computing.

Integration of Hence, Hadoop Grocery store sales Large
Apriori algorithm MapReduce depend | dataset dataset
and MapReduce on HDFS system to

= model to evaluate split the data, the

s Data processing in HDFEFS size capacity
2. _ | big data environment | effect the process

2" é by dividing dataset time, by dividing the

g5 E before pass it to the | dataset to fit to the

g ~ | HDFS. HDFS according to
? the HDFS block size
R and the number of

datanodes helps to
speed up the process
and avoid latency.
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Chapter Three

The proposed system
3.1. Introduction
This thesis focuses on usage of Apriori algorithm in combination with MapReduce
Hadoop system. The advantage of Apriori algorithm using MapReduce Hadoop system
will be more faster to process a large amount of data in parallel computing which is the

main purpose of Hadoop.

By working with a large number of computing nodes in the cluster network or grid, a
potential opportunity for the node to fail 1s expected, that causes many tasks to be re-
performed. On the other hand, the Message Pass Interface (MPI) represents the most
common framework for distributed scientific computing, but only works with low-level
language such as C and Fortran. All these problems can be overcome through the
MapReduce framework developed by Google. MapReduce is a simplified programming
model for processing widely distributed data and also used in cloud computing. Hadoop
is a Google MapReduce environment from Apache that is available as an open source
[31].
The research methodology is based on studying and implementing the Apriori algorithm
MapReduce approach, observing the performance of the algorithm with several
parameters.
To overcome all drawbacks of previous models [27,28,29,14,30]; this study proposed a
new approach of apriori algorithm using MapReduce based on parallel approach model.
This approach model is built on merging of two models of Apriori algorithms:

1) Sampling.

2) Partitioning.
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3.2 Apriori algorithm models.
One of the most popular algorithm in Market Basket analysis i1s Apriori algorithm. In
order to develop the Apriori algorithm, to reach the best results and to avoid the defects
there were many implementations developing of the Apriori algorithm.

3.2.1. Sampling model
Sampling refers to mining on a subset of a given data. A random sample (usually large
enough to fit in the main memory) may be obtain from the overall set of transactions, and
the sample is searched for frequent itemset.
e Sampling can reduce I/O costs by drastically shrinking the number of transaction to

be considered.

e Sampling can provide great accuracy with respect to the association rules.

3.2.2. Partitioning model
Partitioning the data to find candidate itemsets. A partitioning model technique can be
used that requires just two database scans to mine the frequent itemsets.
3.3. Apriori algorithm on Hadoop MapReduce
To apply Apriori algorithm to a MapReduce framework, the main tasks are to design two
independent Map function and Reduce function. The functionality of the algorithm is
converting the datasets into pairs (key, value). In MapReduce programming model, all
mapper and reducer are implemented on different machines in parallel way, but the final
result is obtained only after the reducer is finished. If the algorithm is repetitive, we have
to implement a multiple phase of the Map-Reduce to get the final result [32].
34. The proposed model Partitioned MapReduce Apriori algorithm (PMRA).
The basic idea behind proposed model is a combination of two Apriori algorithm models
sampling and partitioning. It goes through several stages, starting with splitting the dataset

into several parts (partitioning), and using MapReduce function for applying Apriori
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algorithm on each partition separately from other parts (sampling). The proposed model
(PMRA) gives pre-results from each partition. These results are changed after each
MapReduce completes the processing; this is because the system will add the new results
to the one before. This pre-result gives the ability to make decisions faster than applying

the whole Apriori algorithm on the complete dataset.

The size of each partition must fit to the Hadoop system, so we must understand how
Hadoop distributed file system HDFS work. HDFS is designed to support massive large
files. HDFS-compliant applications are those deals with large datasets. These applications
write their data only once but read the one or more times and need to satisty these readings
at flow speeds. HDFS supports semantics write-once-read-many to files. The typical
block size that HDFS uses 1s 64 Megabytes (MB). Thus, the HDFS file has been divided

into 64 MB chunks, and if possible, each part will have a different datanode.

Each single block is processed by one mapper at a time. Therefore, if we have N
datanodes that mean we need N mapper and this will take more time if we do not have

enough processors to run N maps in parallel.

From the previous impediment, the proposed approach partitions out large dataset to
several partitions of datasets then those, partitions are send to the Hadoop MapReduce
Apriori implementation. In addition, the result will not eliminate any item, it keeps all the
results waiting for the other partitions finishing process and add its result to the results

table and count the items again to give us the new result.

The Hadoop system works here as a parallel and distributed system if the system have

one node or more even one cluster or more.
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3.5. Hadoop MapReduce-Apriori proposed model (PMRA)
Suppose we know the number of nodes and we wanted to send the partitions to fit to these
nodes, so each datanode will have only one block to run at a time, here in Hadoop by

default will be 64MB per block for each node.

3.6. The PMRA process steps:
1. Count how many nodes in your Hadoop system.

2. Partitioning the dataset in blocks based on the equation no (3.1).

N = 3.1).

n x BS

Where:

N: Number of partitions.
M: Size of datasets.

n: Number of nodes.

BS: Default block size in Hadoop distributed file system (64MB) of
dataset send to each data-node, which can changed for special purpose to

128MB or 256MB ... etc.

3. From the equation no (3.1), we will get the number of partitions that we need to
partitioning our dataset, so when passing first partition to Hadoop system. The
Hadoop system, in turn will pass it to the HDFS, the HDFS partition it again to
the number of datanodes in the Hadoop system and each datanode will has only
one block.

The size for each partition will be known from the equation no (3.2).

M
PS = (3.2).
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Where:

PS: Partition size.

M: complete dataset size.

N: Number of partitions.

The Hadoop system receives a block of dataset (Partition), and then this block fits
directly to its nodes because the size of the partition is depending on how many
nodes Hadoop has.

. Each partition is sent to the Hadoop HDFS as on file and the Hadoop split it to
parts. Each part is divided to blocks. Each block will be 64MB or less as the
default size of HDFS block size.

Each input division is assigned to a map task (performed by the map worker) that
calls the map function to handle this partition, and then the Traditional Apriori
algorithm is applied.

The map task is design to process the partitions one by one, this will be through
works on these partitions as files. One block processed by one mapper at a time.
In mapper, the developer can determine his/her own trade area according to the
requirements. In this manner, Map runs on all the nodes of the cluster and process
the data blocks (for the target partition) in parallel.

The result of a Mapper also known as medium or intermediate output written on
the local disk. Specific output is not stored on HDFS because they are temporary

data and if they written to HDFS will generate many unnecessary copies.
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9.

10.

11.

12.

e

14.

15.

The output of the mapper is shuffled (mixed) to minimize the node (which is a
regular slave node but the lower phase will work here is called a reduced node).
Shuffled is a physical copying movement of data, which done over the network.
Once all mappers have finished and output their shuffled in a reduced nodes, this
medium output is merged and categorized. Then they are provided as an inputs to
the reduce phase.

The second phase of processing is Reduce, where the user can specify his/her
business area according to requirements. Input to the reducer of all map designers.
The reduced output is the final output, which written on HDFS.

The reduce task (executed by reduce worker) is started directly after all maps from
first partition finished giving a pre-result without waiting for other partitions maps
to be finished. When the maps from first partition complete their cycle, the second
maps cycle for the next partition start directly, applying the traditional Apriori
algorithm on the second maps cycle. The output will be a list of intermediate
key/value pairs, adding the results from the first maps cycle to the second. And so
on, until reading the last partition maps. The last cycle must have the same results
or more for applying traditional Apriori algorithm overall dataset.

When MapReduce function run, each node will processed on one block and send
the result to the reducer and the reducer will collect the results from the mappers
to give us the result for this partition alone without waiting for other partitions.
This result is a pre-result for our complete dataset.

The system will pass the second partition after the map cycle complete and pass
its results to the reducer. The reducer here will add the new results to the previous
results.

The system will continue for N cycles until passing all the N partitions.
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16. The results must be the same results or at least contain the same results if we run

traditional Apriori algorithm overall dataset directly.

The problem of mining association rule is to find only interesting rule while running all
uninteresting rules. Support and confidence are the two interestingness criteria used to
measure the strength of association rules, but there are another measure can be used and

it is more powerful which called a /ifz.

To understand how the proposed approach works, following points are discussed:

1. How the Hadoop HDFS data flow work.
2. The purpose from the proposal.

3. The situation that our proposal will work on it.

For inspect these points it assumed the following assumption.

Suppose we have n nodes and each node have 64MB Block size, and we have dataset
with size M, and we run a MapReduce procedure on this dataset so we need to copy

the whole dataset to the HDFS (which will divide it to chunks "Blocks" in 64MB size

for each).

Here the HDFS system will have two scenarios:

1. First scenario is when the n (number of nodes) is bigger or equal to the number of
chunks (Blocks), in this case our proposal not needed. Figure 3.1 shows the first

scenario data flow.
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DN1 DN3
Block 1 Block 3

|

DN2 DNn

Block 2 Block n

Figure 3.1. The first scenario data flow.
Where:

e DN: DataNode

2. Second scenario is when the n (number of nodes) is smaller than the number of
chunks (Blocks), in this case the Hadoop system will pass the divided chunks to
the nodes until Hadoop system pass chunks to all nodes. Running the MapReduce
procedure and the remaining chunks will wait until any node finished the
MapReduce procedure. And then, the HDFS will pass one of the reaming chunks
to the free node.
This will cause latency because the Hadoop MapReduce function will not
completed and give results until all the chunks be process. Figure 3.2 shows the

second scenario data flow.

39



DN1 DN3

Block 1 Block 2 Block 5 Block 6

DN 2

Block 3 Block 4 Block n-1 Block n

Figure 3.2. The second scenario data flow.
In the second scenario, the proposed approach will be the solution, especially in analytic
systems that depends on time and the dataset is large to fit to the system simultaneously.
Suppose we implement the proposal in the second scenario, the prototype system will
divide the dataset into partitions to fit into the Hadoop HDFS system and after the Hadoop
MapReduce completes the first cycle, which applied on the first partition and give us the
results (Pre-result) the implementation will pass the next partition, which results in

avoiding the latency. Figure 3.3 shows the proposed model data flow.
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Partition 1

DN1 ON3

Partition 2

Partition 3

Block 1 Block 3

Dataset l

DN2

Partition N

Block 2 Block n

Splitter

Where M/n > N*n and
each partition size is
equal to n*64

Each node contains a 64 MB split of data
partirion.

Figure 3.3. The proposed model data flow.

3.7. Summary

In this chapter, the proposed Apriori algorithm approach based on the MapReduce model
on the Hadoop system presented. First, produce the Apriori algorithm two models
combination used in our proposal. Second, present the theoretical base behind the
proposal by explaining how the proposal system work. Finally, assumed two different
scenarios for handling datasets in Hadoop HDFS to represent when the proposal would

be efficient.
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Chapter Four

Implementation

4.1. Introduction

In this chapter, the implementation of the proposed method presented. Described all steps
of the proposed MapReduce-Apriori using the codes and diagrams. Using the MapReduce
model to solve the problem of processing a large-scale dataset. First, presented the steps
of building a Traditional Apriori algorithm and explaining all the steps through this
program. Second, described the split procedure, and how it works. Third, described the
steps of converting the MapReduce-Apriori program code to be run as the Hadoop
MapReduce function and how it works. Finally, presented the merging and comparing
the prototype using diagrams. The proposed method implemented with the following

technologies:

e Python language as a core-programming tool.

e Cloudera CDH.

e Anaconda and Jupyter Notebook with Python Language as core programming
tool to merge and compare for analytic and evaluate the results.

4.2, The system specifications.

1. Hardware specifications:

CPU: Intel Core 15-4570

Ram: 32 GB

HDD: | 500 GB

2. Software specifications:
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Operating system: Windows 10 Professional edition
Virtual operating system application : Oracle VM VirtualBox ver. 6.0
Operating system on virtual machine : CentOS-7-x86 _64-DVD-1810
Hadoop Eco System: Cloudera CDH 5.13

4.3. Dataset structure

Our dataset container is a 'csv'; file with the following specifications

File Name: Sales Grocery dataset.

Format: CSV.

File size: 565 MB.

Documents (Rows): more than 32 million, containing 3.2 million unique orders and about

50 thousand unique items.

Fields: four fields for each row (order id,product id,add to cart order,

Reordered).

Our work will focus on the first two fields (order id,product id), both of these fields
needed and important for applying Apriori algorithm and the other fields not important

to the algorithm .

4.4. Hadoop HDFS file format

A storage format is just a way to define how information is stored in a file. This is usually

indicated by the extension of the file (informally at least).

When dealing with Hadoop’s file system not only do you have all of these traditional

storage formats available to you (as if you can store PNG and JPG images on HDFS if
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you like), but you also have some Hadoop-focused file formats to use for structured and

unstructured data.

Some common storage formats for Hadoop include:

l.

a

Text/CSV Files.
JSON Records.
Avro Files.
Sequence Files.
RC Files.

ORC Files.

Parquet Files.

Text and CSV files are quite common and frequently Hadoop developers and data

scientists received text and CSV files to work upon. However, CSV files do not support

block compression, thus compressing a CSV file in Hadoop often comes at a significant

read performance cost. CSV files also easy to export and import from any database.

Choosing an appropriate file format can have some significant benefits:

1. Faster read times.

2. Faster write times.

3. Splittable files (so you do not need to read the whole file, just a part of it).

4. Schema evolution support (allowing you to change the fields in a dataset).

5. Advanced compression support (compress the files with a compression codec

without sacrificing these features).

Some file formats designed for general use (like MapReduce or Spark); others designed

for more specific use cases (like powering a database).
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From the previous clarification, which specifies the type of data files that can used in the
Hadoop HDFS system; to deal with the Hadoop HDFS system, the MongoDB dataset

must be converted to csv file format.

4.5. Traditional Apriori algorithm implementation

Work with Apriori algorithm in a large dataset needs some filters and conditions to

write an efficient code.

First, when start writing the code using lists and dictionaries which considered more
than good for a small Dataset , the program run efficiently for a small training set, but
the system crushes when we try to test the program with a large dataset. The reason for
system crushes is that, the process of large dataset with that type for data analysis of
search for frequent items in large dataset contain more than 32 million rows (record)
with about 50 thousand unique items which need a lot of repetitive loops and a huge

amount of memory.

Therefore, start writing the code for Apriori algorithm using what called "Python
Generators"” in python programming language. Generator functions allow developers
to declare a function that behaves like an iterator, i.e. it can be used for loops. As shown

in Appendix A.

4.5.1. Python Generator

The Python generator is a function, which returns a iterate generator (just an object we
can replicate) by calling the yield. The yield, may be called a value, in which case this
value is treated as a "generated" value. The next time you call Next () on a iterate
generator (that is, in the next step in the for loop, for example), the generator resumes

execution from where it is called the yield, not from the beginning of the job. Each case,
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such as local variable values, retrieved and the generator continues to execute itself until

the next call is called.

This is a great property for generators because it means that we do not have to store all
values in memory once. Generator can load and process one value at a time, when finished
and going to process the next value. This feature makes generators ideal for creating and

calculating the recurrence of item pairs.

4.5.2. Traditional Apriori algorithm Design
Apriori is an algorithm used to identify frequent item sets (in our case, item pairs). It does
so using a "bottom up" approach. First, identifying individual items that satisfy a
minimum occurrence threshold. It then extends the item set, adding one item at a time
and checking if the resulting item set still satisfies the specified threshold. The algorithm
stops when there are no more items to add that meet the minimum occurrence

requirement.

4.5.3. Association Rules Mining
Once the item sets have been generated using Apriori, mining association rules can be
started. In the proposal, it is satisfied with looking at itemsets of size 2, the association
rules will generate of the form {4} -> {B}. One common application of these rules is in
the domain of recommender systems, where customers who purchased item A are

recommended item B.

The reason we will look for 2-itemsets frequency is:

1. It requires many dataset scans.

2. Itis very slow.
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3. In particular, 2-itemset will be enough to evaluate our proposal method,
because the proposal focus on sampling and partitioning using

distributed system.

There are three key metrics to consider when evaluating association rules:

1. Support

This 1s the percentage of orders that contains the item set. The minimum support
threshold required by Apriori can be set based on knowledge of your domain. In
this example for dataset grocery, since there could be thousands of distinct items
and an order can contain only a small fraction of these items, setting the support

threshold to 0.01% is reasonable.

2. Confidence
Given two items, A and B, the confidence measures is the percentage of times that
item B is purchased and that item A was purchased. This is expressed by the

equation no (4.1).

confidence{A-> B} = support{A,B} / support{A} (4.1)

Confidence values range from 0 to 1, where 0 indicates that B is never purchased when
A is purchased, and 1 indicates that B is always purchased whenever A is purchased. Note
that the confidence measure is directional. This means that we can also compute the
percentage of times that item A is purchased, given that item B was purchased This is

expressed by the equation no (4.2).

confidence {B->A} = support{A,B}/support{B} } (4.2).
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3. Lift

Given two items, A and B, lift indicates whether there is a relationship between A
and B, or whether the two items are occurring together in the same orders simply by
chance. Unlike the confidence metric whose value may vary depending on direction,
lift measure has no direction. This means that the lift{A,B} is always equal to the

lift{B,A}, based on the equation no (4.3).

lift{A,B} = lift{B,A} = support{A,B} / (support{A} * support{B}) } (4.3).

Therefore, the lift measuring chosen to locate and determine the frequent items, which

considered more reliable and reduce the calculating and comparing processes.

e The prototype system is divided in three main parts:

= Part A: Data Preparation, which include:

1. Load order data.
2. Convert order data into format expected by the association rules function.

3. Display summary statistics for order data.

= Part B: Association Rules Function, which include:

1. Helper functions to the main association rules function.

2. Association rules function.

= Part C: Association Rules Mining
The proposed system uses Apriori algorithm in Hadoop and compares the results with
Traditional Apriori algorithm.

First, Traditional Apriori algorithm prototype in large dataset is implemented and the
results is saved in that file for comparing with the proposed-implemented system.
The Traditional Apriori algorithm prototype system consists of the following
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components:

e The Libraries, which included in the prototype which are:

pandas, numpy, sys, itertools,collections ,[Python.display,time and random.

e The prototype includes the following functions:

1. A Function that load the orders 'csv' file to DataFrame and convert the DataFrame
(Two-dimensional size-mutable, potentially heterogeneous tabular data structure
with labeled axes rows and columns) to Series (One-dimensional ndarray with
axis labels including time series) then returns the size of an object in MB.

2. A Function Returns the frequency counts for items and item pairs.

3. A Function Returns the number of unique orders.

4. A Function Returns a generator that yields item pairs, one at a time.

5. A Function Returns the frequency and support associated with item.

6. A Function Returns the name associated with item.

7. A Function Association rules, which include the following producers:

a) Calculate item frequency and support.
b) Filter for items below minimum support.
c) Filter for orders with less than two items.
d) Recalculate item frequency and support.
e) Get item pairs generator.
f) Calculate item pair frequency and support.
g) Filter order for item pairs those below minimum support.
h) Create table of association rules and compute relevant metrics.
i) Return association rules sorted by lift in descending order.
8. A Function Replaces item ID with item name and displays association rules.

The above steps are shown in Figure 4.1.
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Read dataset to a dataframe

Convert dataframe to series

Remove unique orders (orders less than 2
items)

Calculate frequancy and confidence for
items pairs

Item_Sup >= min_sup Remove ltem

Calculate lift for item pairs

filter item according to lift item pair lift >= 1 Remove ltem

Return sorted table by lift in decending
order

Replace Item 1D with ltem Name

Figure 4.1 Traditional Apriori model diagram.
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4.6.

The implementation of proposed PMRA

This section contains two main tasks:

First task is splitting the dataset to several partitions.
Second task is running MapReduce Apriori algorithm for each partition separately

from other partitions.

. Dataset splitter

The idea here is very simple, the dataset (the orders file) in 'csv' format with

1

a standard separated '), this file (the orders file) contains more than 32
million line stored in a file with size 565 MB, and the prototype system uses
a Hadoop system with a single node for testing purpose. For explanation, if
we used 64 MB block size in HDFS that means we will divide the file size
by 64MB, which will be:

Split size = 565/64 = 8.82
It means, that the dataset file is split to nine files at least.
In addition, we have 32 million line, so we need to divide the dataset to 10
files at least. Which means, each file contains 3.3 million line. As shown in
Appendix D.

The structure of the splitter prototype is shown in figure 4.2 and explained

in the following steps:
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Reading datasel line by
line

it line count >= 3.5million

Create a split file in csv format

f reach the last line of the dataset

Figure 4.2: The splitter diagram.
Reading the dataset file using standard input.

Count the lines entered by standard input until reach the first 3.3
million line, then create the first file using the same file name for the
dataset and add number 1 at the end of the file name.

Start count from the line comes next the line we entered in the file
before and create the second file using the same file name for the
dataset and add number 2 at the end of the file name.

Continue with the same procedure until dataset file reaches the last

line. At the end, 10 csv files present the result of the splitter.
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4.6.2. Partitioned MapReduce Apriori algorithm prototype PMRA.
In Hadoop MapReduce, there are some changes comparing with the Traditional Apriori

algorithm prototype, which illustrated in section (4.5).

The obvious difference is needed to be consider is the way the data is feed to the
prototype system.
e The MapReduce architecture needs that map and reduce jobs are written as

programs that read from standard input and write to standard output.
e Hadoop reads input files and streams them to standard output.
e For each line in standard input, Map function is called.
e Map is responsible for interpretation the input and formatting the output.
e Maps writes lines to standard output.

There are several techniques to write MapReduce program depending on the purpose of
it, like data cleansing, data filtering, data summarization, data joining, text processing and

computing.

Since this thesis, focuses on data partitioning before pass it to the HDFS. Therefore, data-

cleansing technique in a simple format is used. As shown in Appendix B.

The MapReduce Apriori algorithm partitions prototype system is shown in Figure 4.3 and

it includes the following functions:
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Read dataset from standard
input to a dataframe

v

DataSet Convert dataframe to series

A

Remove unique orders (orders
less than 2 items)

Splitter { according to the
HDFS dalanodes size and 1
number

Calculate frequancy and
confidence for items pairs

Process  No
Item_Sup >= min_sup Remove ltem

Passing eash split to the
HDFS individual and pass
the next after the it
finished

Calculate lift for item pairs

'

Thter nem accordng to (% iem pair It >= 1 Remove ltem

Return results line by line as oul
put to Reduce Function

HDFS (Results)

Return sorted table by lift in
decending order

Take the output from Map
function as input to Reduce
function and pass it as output
Replace Item 1D with item Name from Reduce function and the
Results stored to the HDFS

Figure 4.3: The proposal PMRA diagram.
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Split the dataset according to the HDFS capacity.

. Pass first split (partition) to the HDFS.

The HDFS takes care of the passed partition and split it again to the datanodes. In
our case and for experimental purpose is used a single node. Therefore, the HDFS
pass it directly without splitting and the partition will fit directly to the datanode
because it is split before passing to HDFS according to HDFS capacity in step 1.
. Hadoop streaming function runs the MapReduce function.

The MapReduce function executes the map function first, which includes the same
procedures like the Traditional Apriori algorithm with some modifications.

The main modification is the way feeding the data to the map function and how
the map function outputs the results. Both of input and output must use standard
input/output functions.

The reducer function here in cleansing technique takes the output from the map
function as an input and directly pass it as output to HDFS.

Taking the results from HDFS and returns association rules sorted by lift in
descending order.

. Replaces item ID with item name and displays association rules.

The merge and comparison process.

Applying both prototypes represented before ( in sections 4.5 and 4.6) creates the result

files, one result file for the whole dataset from experimental one in section (4.5) and ten

results files from the experimental two in section (4.6).

The result files have the same headers, but with different values. The result file from

applying the prototype in section (4.5) contains information about the whole dataset, but

the results files from applying section (4.6) each one contains information about the

partition it belongs to. Table 4.1 shows the results tables.
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The comparing process compares the values obtained from experimental one in section
(4.5) with the results files obtained from experimental two in section (4.6) sequentially.
After merging each result file with the result file from the previous cycle. The process of
comparing the results file of the Traditional Apriori algorithm will continue with each
merge file form the proposed MapReduce Apriori algorithm until the merge of the results

files is completed.
For comparison purpose, some operations to speed up the process are used:

1. Comparison is conducted between itemA, itemB and lift.

2. All lift values less than 'l" is eliminate. As shown in Appendix C section A.

Resulto00.csv Read MapReduce Apriori Read MapReduce Apriori Result001.csv
result file n result fite n+1

Reindex, remove duplicate
Remove

compare

Figure 4.4: The merge diagram
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In addition, in merge file some operations are performed as shown in Appendix C section

B:

1. After merging the result files in one DataFrame, it is noted that the new merged
DataFrame has duplicated indexes.

2. Re-index the sorted merged DataFrame to solve the duplicated indexes issue.

3. Sorting the merge DataFrame by higher lift.

4. Search for duplicated rows depending on the itemA and itemB columns, keep the
first row of frequent items, and drop the other (second row) because after sorting
the first row of frequent items would have the higher lift. These operations are

shown in Figure 4.4.

4.8. Summary

This chapter explained the implementation of the proposed model. First, the Traditional
Apriori algorithm on two frequent itemsets is implemented. Second, the Association
Rules Mining and the three key metrics to consider when evaluating association rules are
presented. Third, the proposed dataset splitter and the MapReduce Apriori algorithm for
each part separated from other parts are implemented. Finally, the merge and comparing

process implemented.
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Chapter Five

Experiments, Results and Discussion

5.1. Introduction

This chapter, explores the dataset structure, presents, explains and analyzes the
experimental results. It starts by explaining the experiments and results of the traditional
model and the proposed model. Then, it demonstrates the measurement of performance.
Finally, it discusses and compares the experiments results together through time
execution to generate strong association rules using the lift factor in the association rules

mining using Apriori algorithm.

5.2. Experiments Infrastructure.

To test the proposal performance, there are two main prototypes. First one, for traditional
Apriori algorithm experiment and the second one for Partitioned MapReduce Apriori

algorithm (PMRA).

5.3. Traditional Apriori algorithm Experiment

Applying the dataset to the Traditional Apriori algorithm on 2-items frequent and save

the results to 'csv' file. The result file contains the following details:

1. Traditional Apriori algorithm prototype generates 12 fields (Transition Number,
itemA, itemB, freqAB, supportAB,freqA, supportA, freqB, supportB,
confidenceAtoB, confidenceBtoA, lift), these fields contain calculated data
extracted from the given dataset.

2. The result file contains around (48752) rows.

3. These rows contain all the frequent two items.

4. These rows sorted in descending order according to lift column.
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5. The most important rows in this experiment are the rows with 'lift' field value

equal or greater than 'l', which were the first 208 rows.

54. PMRA experiment

In this experiment, applying the dataset on Hadoop eco system. As it mentioned earlier
in section (4.6.2.), for experimental purpose proposed method is applied on Hadoop with

a single node cluster.

This single node can receive 64MB (the default size of the HDFS block in the datanode)

of dataset and passes it to the MapReduce function implemented in section (4.6).

5.4.1. Splitting the dataset
As explained in section (4.3), the dataset size is 565MB. So when splitting the dataset to

a 64MB or fewer, the results file from the splitter was 10 files.

These files had the same name of the original dataset added to the end of the splits
par<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>