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Abstract 

Searching for frequent patterns in datasets is one of the most important data mining issue. 

The development of fast and efficient algorithms that can handle large amounts of data 

becomes a difficult task because of high volume of databases. 

The Apriori algorithm is one of the most common and widely used data extraction 

algorithms. Many algorithms have now been proposed on parallel and distributed 

platforms to improve the performance of the Apriori algorithm in big data. The problems 

in most of the distributed framework are the overhead of distributed system management 

and the lack of a high-level parallel programming language. Also with retinal computing, 

there are always potential opportunities for node failure that causes multiple re-execution 

of tasks. These problems can be overcomes through the MapReduce framework. 

Most of Map Reduce implementations were focused on the technique of MapReduce for 

Apriori algorithm design. In our thesis the focus is on the size of dataset and the capacity 

of the Hadoop HDFS, how much the Hadoop system can process simultaneous. Our 

proposal system Partitioned MapReduce Apriori algorithm (PMRA), aims to solve the 

latency and even provide solution for small companies or organizations whom want to 

process their data locally for security or cost reasons. 

All of these reasons encourage us to propose this solution trying to solve previous 

problems. The basic idea behind this research is applying Apriori algorithm using Hadoop 

MapReduce on a divided dataset, and comparing the results with the same process and 

dataset performed using Traditional Apriori algorithm. 

The obtained results show that, the proposed approach arrive a solution for big data 

analysis using Apriori algorithm in distributed system by utilize a pre-decision-making. 
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Chapter One 

Introduction 

This chapter contains the following subsections: Introduction to big data creation, 

sources of big data, big data definitions, challenges and opportunities, big data mining, 

distributes and parallel systems, Hadoop eco-system and problem statement, declaration 

the major aims of the research by develop a modified approach model to implement 

Apriori algorithm using MapReduce and evaluation method . 

1.1. Background 

The amount of data that is generated and stored at the global level is almost 

inconceivable, and it continues to grow rapidly. This means that there are more 

potentials for extracting key insights from business information, but only a small 

fraction of the data is actually analyzed. 

Nowadays, the amount of data generated every two days is estimated at five 

Exabyte's. This quantity of data is similar to the amount of data generated from the 

dawn of time until 2003. In addition, it was appreciated that 2007 was the first year 

in which all the data we produce could not be stored. This huge amount of data opens 

new difficult discovery tasks [ 1]. 

The use of data today changes the way we live, work and play. Companies in 

industries around the world use data to transform themselves into more flexible, 

improve customer experience, introduce new business models, and develop new 

sources of competitive advantage. Consumers live in an increasingly digital world, 

relying on internet and mobile channels to connect with friends and family, access 

goods and services, and run almost every aspect of their lives, even while they sleep. 

Much of today's economy is data-driven, and this reliance will only increase in the 
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future as companies capture, index and criticize data at every step of their supply 

chain; Social media, entertainment, cloud storage and real-time personal services in 

the streams of their lives. The result of this increased reliance on data will be an 

endless expansion of the global DataSphere. Estimated to be 33 ZB in 2018, IDC 

expects Global DataSphere to grow to 175 ZB by 2025 [2]. 

Annual Size of the Global Datasphere 

Annual Size of the Global Datasphere 175 ZB 180 
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Source Data Age 2025, sponsored by Seagate with data from IDC Global DataSphere, Nov 2018 

Figure 1.1 Annual Size of the Global DataSphere. (Source: [2]) 

1.2. Data progression 

Traditional database systems are based on structured data. Traditional data is stored 

in a fixed form or in fields in a file. Examples of structural data including the relational 

database system (RDBMS, which answer only questions about what happened. The 

traditional database only provide an idea of a small-scale problem. However, the 

unstructured metadata used in order to improve and reinforce the ability of an 

organization to acquisition more insight into the data and also to learn the information 

[3]. Large (Big) data uses both semi-structured and unstructured data and improves 
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the diversity (variety) of data collected from different sources such as customers, the 

public or subscribers [ 4]. 

The traditional source of data was personal files, documents, finances, stock records 

and so on, which entered and stored by workers from the begging of computer 

technologies until the earlier decade of internet. And with new technologies such as 

social media, the data starts to come from users. Furthermore, in the last decade the 

machines start accumulating data (mobile networks, cameras, GPS, scanners, sensors, 

satellite monitoring, IOT ... i.e.). 

1.3. Big data definition 

From that large amount of data comes new terms, one of them is big data. Big data 

has several definitions from several groups work on it. One of these groups focuses 

on the inclusion of their characteristics. When presenting the challenges of data 

management faced by companies in response to the rise of e-commerce in early 

2000's, Doug Laney provided a framework reflecting the three-dimensional increase 

in data: Volume, Velocity and Variety. The need to draw a new practices involving 

the "tradeoffs" and architectural solutions that impact application decisions and 

business strategy decisions [5]. 

Although this definition did not explicitly mention big data, later the form definition 

of big data known as" the 3 Vs.", was linked to the concept of big data and used to 

define it [ 6]. 

Another definition, big data is a collection of datasets with sizes beyond the ability of 

commonly used software tools to capture, mine, manage and process data within a 

reasonable time. Big data requires a range of techniques and technologies with new 

forms of integration to discover complex and large-scale insights from datasets. As of 
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2012, approximately 2.5 Exabyte's of data are created every day, and this figure 

doubles almost every 40 months [7]. More data over the internet every second of the 

internet was stored just 20 years ago. This gives companies a chance to work with 

many data Petabytes in a single dataset and not just from the Internet. 

For example, it estimated that Walmart collects more than 2.5 petabytes of data every 

hour of customer transactions. A Petabyte is one of quadrillion bytes, or equivalent to 

about 20 million text storage files. An Exabyte is 1,000 times that amount, or a billion 

gigabytes. [7]. 

Gartner [8] defines big data as, "Big data is high volume, high velocity, and/or high 

variety information assets that require new forms of processing to enhance decision 

making, insight discovery and process optimization. "The 3 Vs. definition of Gartner 

is still widely used and is in agreement with a consensual definition that states that 

"Big Data represents the Information assets characterized by such a High Volume, 

Velocity and Variety to require specific Technology and Analytical Methods for its 

transformation into Value"[8]. 

The 3Vs has been expanded to other complementary characteristics of big data: 

Volume: Which means the size of the data. Volume is the V most closely associated with 

large data, because the volume can be large. The amount of data generated and stored. 

What we are talking about here is the amount of data that reaches almost 

incomprehensible proportions. The size of the data determines the potential value and 

insight whether the data can be considered large or not. 

Velocity: Which means speed. Big data is often available in real-time. For many 

applications, the speed of data creation is more important than size. Actual real-time 

information allows the company to be more agile than its competitors [7]. 
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Variety: Means diversity, big data draws from text, images, audio, and video. In addition 

they complement the lost pieces by merging data, in other word it completes missing 

pieces through data fusion[9]. 

As we have mentioned earlier, big data has multiple definitions, with the progression in 

big data, the new dimensions become important and widely used. The importance of the 

information quality (IQ), with calls for the characterization of large data not only along 

the three dimensions specified, it has been recently recognized and is called "Vs., volume, 

variety and velocity, but also along the fourth dimension "V": veracity [10]. 

Veracity: is the quality of data captured that can vary dramatically and greatly, which 

affects the accurate careful analysis. 

Big data contains many different types of organized structured and non-structured data. 

Structured data is well defined and can normally be represented as numbers or categories: 

for example, your income, your age, your gender, and marital status. Unstructured data is 

not well-defined. It is often difficult to categorize and categorize texts: for example e­ 

mails, biogs, web pages, and transcripts of phone [11]. 

1.4. Big data Challenges 

Anyhow, the importance of big data is not about how much data we have, but what can 

we do with it. You can take any kind of data from any source and analyze them to find 

answers that enable you to reduce costs and time, develop new products and offers 

improve make smart decisions. When you merge large data with high performance 

analytics, you can accomplish business-related tasks such as: 

• Identify the root causes of failures issues and flaws in almost real time. 

• Establishment of voucher at the point of sale based on customer's purchase habits. 

• Fully recalculate the risk portfolio in minutes. 
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• Detecting fraudulent behavior before it affects your organization. 

1.5. Big data mining 

This type of data analysis called Data Mining. It is a way to get undiscovered patterns 

or facts from a massive huge amount of data in the database. Data mining also known 

as a one-step in the Knowledge discovery in Databases (KDD). The need for data 

mining is increased as it helps to reduce cost and increase profits [12]. Data mining is 

the effective detection of previously unknown patterns in large datasets [13]. 

Apriori algorithm is one of the most common algorithms in data mining to learn the 

concept of association rules. It used by many people specifically for transaction 

operations, and can be used in real-time applications (for example, shop grocery, 

public store, library, etc.) by collecting the materials purchased by customers over 

time. 

Apriori algorithm is very widely used in data mmmg application, it has some 

limitations. It is costly expensive to deal with a large number of candidate sets. It 

exhausted to scan the database frequently and check the large selection of candidates 

by matching the pattern, which is especially true for long mining patterns. The Apriori 

algorithm in general has two major deficiencies. First, you need to scan the database 

repeatedly and second you need to generate a large number of candidate item set [ 13]. 

1.6. Parallel and distributed computing 

Unfortunately, in parallel and distributed computing, when the size of a dataset is 

huge, the memory usage and computational cost can be extremely expensive. In 

addition, single processor's memory and CPU resources are very limited, which make 

the Apriori algorithm performance inefficient. Parallel and distributed computing are 

effective strategies to speed up the performance of algorithms. Parallel and distributed 
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computing offer a potential solution for the above problems if the efficient and 

scalable parallel and distributed algorithm can be implemented. Such easy and 

efficient implementation can be achieved by using Hadoop-MapReduce model[14]. 

Consider Hadoop as a set of open source programs and procedures (that is, anyone 

can use or modify, with some exceptions) that anyone can use as backbone for large 

data operations. 

Hadoop is not a type of database, but rather a software ecosystem that allows for 

massively parallel computing. It is enabled for certain types of distributed NoSQL 

databases (such as HBase), which can allow the spread data across thousands of 

servers with a slight decrease in performance. There are four units of Hadoop, each 

of which performs a specific task that is necessary for a computer system designed 

for large data analytics. These modules are, Distributed File-System, MapReduce, 

Hadoop Common and YARN. 

MapReduce is named after the two basic operations this module carries out, reading 

data from the database, putting it into a format suitable for analysis, and performing 

mathematical operations [ 15]. 

Hadoop- MapReduce is a programming model for easy and efficient writing 

applications, which handles process of a huge amount of data (terabytes or more 

datasets) in parallel with large clusters of commodity devices in a reliable manner, 

and fault tolerance. The MapReduce (Task or Job) program partitions (separate) the 

input dataset into independent partitions, which are processed by map tasks (the Map 

task for each division) in a completely parallel way. Hadoop framework combines 

map output and stores it as a set of intermediate key/values pairs that are then fetched 

as a gateway to reduce tasks [15]. Figure 1.2 shows the Hadoop-MapReduce 

architecture. 
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Figure 1.2. Hadoop MapReduce Architecture. (Source: [16]). 

1. 7. Distributed database 

Distributed database system technology (DDBS) is a union of what appears to be have 

two diametrically opposed approaches to data processing: the database system and 

computer network technologies. Database systems have taken us from a model processing 

data in which each application selects and maintains its own data to one where data is 

centrally defined and managed. This new trend leads to data independence, where the 

application programs are immune to changes in the logical or physical organization of 

data, the opposite is true. One of the main motives behind the use of database systems is 

desire to integrate the operational data of the enterprise and provide centralized, and thus 

access controls that data. Computer networking technology, on the other hand it promotes 

a work mode that runs counter to all central efforts. At first glance it might be difficult to 

understand how these two contrasting approaches can possibly be synthesized to produce 

a technology that is more powerful and more promising than either one alone [17]. 
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1.8. NoSQL and Big data 

NoSQL usually used to store big data. This is a new type of database, which has become 

more and more popular among the internet companies today. 

Types of NoSQL databases: 

• A key-value store (also known as a key-value database and key-value store database), 

which is the simplest type ofNoSQL databases. Each item in the database is stored as an 

attribute name ( or "key ") with its value. The most famous databases in this category are 

Riak, Voldemort, and Redis. 

• The Wide column stores data together as columns rather than rows and are optimized for 

queries across larger datasets. The most popular database in this type are Cassandra and 

HBase. 

• Graph databases which is used to store information about networks, such as social 

connections. Examples are Neo4J and HyperGraphDB 

• Document databases which associate each key with a complex data structure that is 

known as a document name. Documents can contain many different key-value pairs, key­ 

array pairs, or even nested documents. MongoDB is the most common of these databases. 

MongoDB is the most popular of all NoSQL databases because it maintains of the best 

relational database features with the integration ofNoSQL. 

The main MongoDB features are: it is an Open Source, Replication, Sharding, 

Schemaless and Cloud for big data. 

In the document database, the database schema idea is dynamic: Each document can 

contain different fields. This flexibility can be particularly useful for modeling non­ 

structured and polymorphic data. It also makes it easy to evolve an application during 

development, such as adding new fields. In addition, document databases generally 
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provide the query power that developers expect from relational databases. Specifically, 

you can query data based on any fields in a document [18]. 

1.9. Problem statement 

Parallel and distributed computing can be defined as the use of a distributed system to 

solve one big problem by dividing it into several tasks where each task is counted on 

individual computers of the distributed system. Hadoop as parallel and distributed system 

composed of more than one self-routing computer connected over the network. All 

networked computers connect to each other to achieve a popular goal through the use of 

their local memory. 

From the previous section (1.6) explanation about parallel and distribute computing, we 

can conclude some drawbacks about Hadoop as parallel and distributed computing. 

1. Slow Processing Speed 

In Hadoop, with a parallel and distributed algorithm, MapReduce processes of large 

datasets. There are tasks that you need to execute out Map and Reduce, the MapReduce 

requires a lot of time to perform these tasks and thus increase latency. To decrease the 

time and increase processing speed, the data will distributed and processed through the 

group in MapReduce. 

2. No Real-time Data Processing 

Apache Hadoop is designed to handle batch processing, which means it takes a huge 

amount of data into the input, processing and producing the result. Although batch 

processing is very effective to handle a high amount of data, it depending on the size of 

the data being processed and the computational power of the system, their output can be 

significantly delayed. As a conclusion, Hadoop is not suitable for data processing in the 

real time. 
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3. Latency 

In Hadoop, the MapReduce framework is relatively slower, because it designed to support 

a different format, structure and large volume of data. MapReduce requires a lot of time 

to perform these tasks and thus increase latency. 

4. Security 

Some organizations have security restrictions to process data on the cloud systems, and 

the local system capacity can not handle processing data in reasonable time. In addition, 

the high cost of buying and maintaining powerful software, servers and storage hardware 

that handle the processing of large amounts of data, prevents them to gain benefits from 

data analysis. 

As a result, we need new approaches of data analysis helping in saving time, reducing 

hardware and software cost. 

1.10. Motivation 

Agrawal and Srikant proposed the Apriori algorithm in 1994. One of common use of it is 

market basket analysis. MapReduce designed at Google for use with web indexing 

technologies. Many approaches implemented in applying Apriori algorithm using 

Hadoop MapReduce each of which present from different perspective. The proposed 

approach suggest a new method to apply Apriori algorithm in big data using parallel and 

distributed computing. 

1.11. Aim an objectives 

The proposed research aims to develop a modified approach to implement Apriori 

algorithm using MapReduce. To achieve this aims, the following objectives are specified: 

1. Investigate the current state of the art of big data issues and developments. 
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2. Develop a modified approach to implement Apriori algorithm using MapReduce 

to save time and reduce hardware cost in processing data by getting a pre-result 

that will help to make pre-decisions. 

3. Evaluate the proposed implementation approach by applying Traditional Apriori 

algorithm at the same dataset without MapReduce and comparing the results and 

processing time. 

1.12. Structure of the Thesis 

The remaining chapters of this thesis are organized as follows: 

Chapter 2 discusses several research papers implantations improving Apriori algorithm 

using Hadoop/MapReduce, and different design implementation. 

Chapter 3 describes the methodology of the proposed approach for applying new method 

in Apriori algorithm using Hadoop MapReduce. 

Chapter 4 explores the details of the implementation of for testing the proposed approach. 

Chapter 5 the proposed experiments results and evaluating are presented. 

Chapter 6 concludes the thesis, it summarizes the observation made through the project 

and suggest some future avenue research directions. 
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Chapter Two 

Literature Review 

2.1. Introduction 

In this chapter, we provide an overview of approaches related to the main topic of this 

thesis. The first section presents the Apriori algorithm for association rule mining and the 

improvements that have been done to improve the performance of Apriori algorithm. The 

second section includes related works using MapReduce as a parallel programming model 

that is used to manipulate data across large datasets using Apriori algorithm. 

Today, huge amounts of data are being collected in many areas, creating new 

opportunities for understanding meteorological, health, financing and many other sectors. 

Big data are valuable assets for companies, organizations and even governments. 

Converting this large data into real treasures requires the support of large data systems 

and platforms. However, the large volume of big data requires large storage capacity, 

bandwidth, calculation, and energy consumption. It is expected that unprecedented 

systems can solve problems arising from items of big data with huge amounts. 

Complexity, diversity, often-changing workloads and the rapid development of large 

data systems pose significant challenges in measuring large data. Without large data 

standards, it is very difficult for large data owners to decide on which system is best to 

meet their specific requirements. In addition, they face challenges on how to enhance 

systems and their solutions to certain or until inclusive workload. 

At the same time, researchers are also working on innovative data management 

systems, hardware architecture, operating systems, and programming systems to improve 

performance of handling big data. 

Data mining means data extraction. It is refers to the activity through large datasets 

searching for relevant or related information. The idea is that companies collect huge sets 

14 



of data that may be homogeneous or automatically collected. Decision makers need to 

obtain smaller, more specific data from these large groups. They use data mining to 

uncover a piece of information that will help to drive and assist in charting a course for 

business. Big data contain a huge amount of data and information and are worth searching 

in depth. Large data, also known as massive data or collective data, indicate the amount 

of data involved is too large to be interpreted by human. Currently appropriate 

technologies are available including data mining, data fusion and integration, machine 

learning, natural language processing, simulation, time series analysis, and visualization. 

It is important to find new ways to enhance the effectiveness of big data analysis. With 

large data analysis solutions and intelligent computing techniques, we face new 

challenges to make information transparent and understandable. 

Frequent sets groups play a key role in many Data Mining tasks that attempt to find 

interesting patterns of databases, such as association rules, correlations, sequences, loops, 

classifications, and clusters. The mining of association rules is one of the most common 

problems of all these Data Mining tasks. Identifying sets of items, products, symptoms, 

and properties, which often occur together in the selected database, can considered as one 

of the basic tasks in Data Mining. 

The original motiving was to search for repeated (frequent) sets from the need to 

analyze the so-called supermarket transaction data, which is to examine the behavior of 

customers in terms of purchased products [19]. Frequent sets of products describe how 

often items are purchased together. 

The important of discovering, detection, figure out and explore all frequent sets is 

extremely difficult. The search area is rapid and exponential in the total of items that 

occurrence in the database and the targeted databases tempted to be large, and contain 
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millions of transactions. Each of these features makes the endeavor to search for the most 

efficiently and powerful techniques to resolve this task. 

2.2. The Apriori algorithm 

Apriori algorithm is one of the main algorithms for generating frequent itemsets. The 

analysis of frequent itemset is a critical step in the analysis of structured data and in the 

creation of correlation between itemset. This stands as the primary basis for learning 

under supervised learning, which includes the classifier and feature extraction methods. 

Applying this algorithm is critical to understanding the behavior of structured data. Most 

of the data organized in the scientific field is voluminous data. 

The processing of this type of huge data requires modem computer hardware. The 

establishment of such infrastructure is costly. You then need to use a distributed 

environment such as a clustered setting to handle such scenarios. The distribution of 

Hadoop MapReduce is one of the cluster frameworks in the distributed environment that 

helps in distributing huge data across a number of nodes in the frame. 

With the introduction of the frequent itemset mining problem, also the first algorithm to 

solve it was proposed, later denoted as AIS. Shortly after that the algorithm was improved 

by R. Agrawal and R Srikant [20], and called Apriori. It is a seminal algorithm, which 

uses an iterative approach known as a level-wise search, where k-itemsets are used to 

explore (k+l)-itemsets. 

2.3. Improvements the efficiency of Apriori 

Many discrepancy of the Apriori algorithm have proposed that concentrate on 

improving the performance of the original Apriori algorithm. Several of these 

improvements are summarize as follows: 
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2.3.1. Hash-based 

This method attempts to generate large itemsets efficiently and reduces the 

transaction database size. When generating LI (LI: First frequent itemset), the 

algorithm also generates all of the 2-itemsets for each transaction, hashes them to 

a hash table and keeps a count. As example, when scanning each transaction in 

the database to generate the frequent 1-itemsets, LI, from the candidate 1-itemsets 

in Cl (Cl: candidate itemset), we can generate all of the 2-itemsets for each 

transaction, hash them into different buckets of a hash table structure and increase 

the corresponding bucket counts. 

The storage data structure in this method is an array and it is suitable for medium 

size databases. The algorithm was proposed by [21]. 

2.3.2. Transaction reduction 

A transaction that does not contain any frequent itemsets cannot contain any 

frequent k+ 1 itemsets. Therefore, such a transaction can be marked or removed 

from further consideration because subsequent scans of the database for j­ 

itemsets, where j> k, will not require it. 

The storage data structure in this method is an array and it is Suitable for small 

and medium size databases. The algorithm was proposed by [22]. 

2.3.3. Partitioning 

Partitioning the data to find candidate itemsets. A partitioning technique can be 

used since it requires just two database scans to mine the frequent itemsets. It 

consists of two phases. First one, the set of transactions may be divided into a 

number of disjoint subsets. Then, each partition is searched for frequent itemsets. 

These frequent itemsets called local frequent itemsets. The storage data structure 
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m this method is an array and it is more suitable for huge-size databases. 

Algorithm was proposed by [23]. 

2.3.4. Sampling 

Sampling refers to mining on a subset of a given data. A random sample (usually 

large enough to fit in the main memory) may be obtained from the overall set of 

transactions, and the sample is searching for frequent itemset. The essential 

concept of the sampling approach is to select a random sample S of the given data 

D, and therefore search for frequent itemsets in S instead of D. That way, we swap 

a certain degree of precision against efficiency. The size of the sample S must be 

convenient that you can perform a search for frequent items in the S in the main 

memory. Because we are looking for repetitive elements (frequent items) in S 

instead of D, it is probable that we will miss some of the frequent global elements. 

To reduce this capability, we use a support threshold below the minimum support 

to find the local elements that are frequent to S. 

The storage data structure in this method is an array and it is right fit for all sizes 

of database. Algorithm was proposed by [24]. 

2.3.5. Dynamic itemset counting 

This method adds the candidate items in different points during the scan 

procedure. The dynamic method of counting items was suggest in the database 

being split into marked blocks with starting points. In this format, new candidate 

itemsets can be added at any starting point, which identify the new candidate only 

directly before each scan of a complete database. The resulting algorithm requires 

that you scan a database that is less than Apriori algorithm. 

The storage data structure in this method is an array and it is appropriate for small 

and medium size databases. The algorithm was proposed by [25]. 
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2.3.6. ECLAT ALGORITHM 

Eclat algorithm is a depth first search based algorithm. It uses a vertical database 

layout instance of a horizontal layout, i.e., instead of inserting all transactions 

explicitly, each item is stored with its cover (also called Tidlist), and the 

intersection-based approach is used to calculate the support of an itemset. 

The storage data structure in this method is an array and it is suitable for medium 

size and dense datasets but not small size datasets. The algorithm was proposed 

by [26]. 

2.4. Related Works Using Hadoop MapReduce 

Many different implementations of the MapReduce interface are possible. The right 

choice depends on the environment. For example, one implementation might be a suitable 

for a small-shared memory machine, another for a large multi-processor, another for a 

larger set of network machines. 

2.4.1. Parallel implementation of Apriori algorithm based on MapReduce 

In study [27], the authors implemented a parallel Apriori algorithm in the context of the 

MapReduce paradigm. MapReduce is a framework to parallel data processing in a high 

performing cluster- computing environment. 

The parallel implementation of Apriori algorithm based on MapReduce framework was 

suggest for processing enormous datasets using a large number of computers. 

The authors proposed a k-phase parallel Apriori algorithm based on MapReduce. It needs 

k scans (MapReduce jobs) to find k-frequent items. The algorithm uses two different map 

functions: one for the first phase and one for rest of the phases. Although the algorithm 

was successful in finding the k-frequent itemsets using the parallel method, it has a 

massive amount of reading frequent Itemsets in the previous phase each time of HDFS. 

The principals of the Apriori algorithm parallel in the MapReduce framework is the 
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design of the map and reduce the functions of the candidate generation and counting 

support. 

Each mapper calculates each candidate's accounts from its own partition, and then each 

candidate is ejected and the corresponding number. After the map phase, the candidates 

are collected, enumerated and grouped in the reduce phase to get partial frequent Itemsets. 

By using count, distribution between map phase and reduce phase, the communication 

cost can be decreased as much as possible. Since frequent 1-itemsets has been found in 

the pass-I by simple counting of items. Phase-I of the algorithms are the straight forward. 

The mapper outputs <item, 1> pair's for each item contained in the transaction. The 

reducer assemble each enumeration of support for an element, and pairs <item, count> as 

frequent 1-itemset to Ll, when the number is greater than the minimum support. The k- 

itemsets are passed as an input to the mapper function and the mapper outputs <item, 1>, 

then the reducer collects all the support counts of an item and outputs the <item, count> 

pairs as a frequent k-itemset to the Lk. Figure (2.1) shows the flow chart of the parallel 

Apriori algorithm. 

L1=find_froquont_l 
-itemsets 

Figure 2.1: The flow chart of the parallel Apriori algorithm 

20 



So one-phase class; the algorithm needs only one phase (MapReduce job) to find 

all frequent k-itemsets, it sounds so good, easy to implement, but its execution time is 

very slow and its performance is inefficient. Ink-phases class (k is maximum length of 

frequent itemsets), the algorithm needs k phases (MapReduce jobs) to find all frequent k­ 

itemsets, phase one to find frequent 1-itemset, phase two to find frequent 2-itemset, and 

so on. 

In this study, they used the transactional data for an all-electronics branch and the 

T1014DlOOK dataset. They replicated it to obtain 1 GB, 2 GB, 4 GB, and 8 GB. For the 

Tl 014D 1 OOK dataset, they have replicated it into 2 times, 4 times, and 8 times and got 0.6 

GB, 1.2 GB and 2.4 GB datasets, respectively. They denoted those datasets as 

Tl 014D200K, Tl 014D400K and T1014D800K. Additionally; they used some transactional 

logs from a telecommunication company. 

The experimental results show that the program is more efficient with the size of the 

database increasing. Therefore, the proposed algorithm can effectively handle large 

datasets on commodity devices. 

2.4.2. An improved Apriori algorithm based on the Boolean matrix and Hadoop 

In other study [28], the researchers proved their improved Apriori algorithm on a 

theoretical basis. First, they replace the transaction dataset using the Boolean matrix array, 

by this method, non-frequent item sets can be removed from the matrix, and there is no 

need to repeatedly scan the original database. You only need to work on the Boolean 

matrix using the vector "AND" operation and the random access properties of the matrix 

so that it can be generated directly the k- frequent itemsets. The objectives of this study 

were to find the base frequent itemsets and association rule in transaction database with 

min_sup and min_conf pre-defined user on the Hadoop-MapReduce framework. 
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Typically, the standard Apriori algorithm has many challenges to discovering the frequent 

itemsets of a massive dataset efficiently and quickly. 

We can follow their proposed system form the tables (1, 2, 3, and 4): 

1. First the transaction database's data format is vertical data format as table 1. 

2. Table 2 is the Boolean expression of the transaction database. 

3. In table 3, there are three frequent I-items IO, Il, and 12. 

4. Table 4 the two blocks blockl and blocks block2. - - 

Table 1: vertical data 
format of transactions 

Table 2: Boolean Matrix of transaction database 

Item TID 
IO Tl, T2, T4 
I1 Tl, T2, T4 
12 Tl, T2, T3 
13 T3 
14 Tl, T4 

Item Tl T2 T3 T4 Support 
IO 1 1 0 1 3 
I1 1 1 0 1 3 
12 1 1 1 0 3 
13 0 0 1 0 1 
14 1 0 0 1 2 

Assume the minsup = 3. It deletes the items whose support is less than the minsup in the 

Boolean matrix. Table 3 is the new Boolean matrix. 

Table 3: The New Boolean Matrix 

Item Tl T2 T3 T4 Support 
IO 1 1 0 1 3 
I1 1 1 0 1 3 
12 1 1 1 0 3 
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Table 4: The two blocks blockl and blocks block2 - - 

Item Tl T2 
IO 1 1 
11 1 1 
12 1 1 
13 0 0 
14 1 0 

And 

Item T3 T4 
IO 0 1 
11 0 1 
12 1 0 
13 1 0 
14 0 1 

Support 
3 
3 
3 
1 
2 

A Boolean matrix is used to replace the transaction database, so non-recurring item 

groups can be removed from the matrix. It does not need to scan the original database, it 

just needs to work on The Boolean matrix that uses the vector operation "AND" and the 

array random access properties so that it can create k-frequent item sets. The algorithm is 

implemented on the Hadoop platform, and thus can significantly increase the efficiency 

of the algorithm. 

2.4.3. Implementation of parallel Apriori algorithm on Hadoop cluster 

In [29], the authors extracted frequent patterns among itemsets in the transaction 

databases and other repositories reported that Apriori algorithms have a great impact to 

find repetitive materials using the candidate generation. The Apache Hadoop software 

framework relies on the MapReduce programming model to enhance the processing of 

large-scale data on a high performance cluster to handle a huge amount of data in parallel 

with large scale of computer nodes resulting in reliable, scalable and distributed 

computing. 

Parallel Apriori algorithm was implemented using Apache Hadoop Framework software 

that improves performance. Hadoop is the program's framework for writing applications 

that quickly handle huge amounts of data in parallel to large groups of account nodes. Its 

work is based on the model of the MapReduce. 
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This single node sheet was implemented by the Hadoop cluster that operates based on the 

model of the MapReduce. Using this Hadoop cluster, the wordcount example was 

performed. This paper [29], also extracts repetitive patterns between a set of elements in 

transaction databases or other repositories using the Apriori algorithm in a single node. 

The Hadoop cluster can easily paralleled and easy to implement. The extracted frequent 

patterns between items in the transaction databases and other repositories, and they 

mentioned that the Apriori algorithms have a great impact on finding the Itemsets iterative 

using the candidate generation. 

The authors have improved the Apriori algorithm implementation with MapReduce 

Programming model as shown below: 

• Split the transaction database horizontally into n data subsets and distribute them 

to 'm' nodes. 

• Each node scans its own datasets and generates a set of candidate itemsets Cp 

• Then, the support count of each candidate itemset is set to one. This candidate 

itemset Cp is divided into r partitions and sent to r nodes with their support count. 

Nodes r successively and respectively accumulate the same number of support 

elements to output the final practical support and identify the recurring Lp 

elements in the section after comparing with min_sup. 

• Finally merge the output of nodes r to generate a set of frequent global itemset 

L. 

2.4.4. An Efficient Implementation of A-Priori algorithm based on Hadoop-MapReduce 

model 

In [14], they presents a new implementation of the Apriori algorithm based on the 

Hadoop-MapReduce model where called the MapReduce Apriori algorithm (MRApriori) 

was proposed. 
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They implement an effective MapReduce Apriori algorithm based on the Hadoop­ 

MapReduce model, which only needs two stages to find all the frequent itemsets. They 

also compared the new algorithm with two existing algorithms that either need one or K 

stages to find the same repetitive elements. 

They suggest to use Hadoop Map Reduce programming model for parallel and distributed 

computing. It is an effective model for writing easy and effective applications where large 

data sets can be processed on collections of nodes computing, this also in a way that is 

fault tolerant. 

To compare and validate the good performance of the newly proposed two-stage 

algorithm with the pre-existing phase I and K-phase scanning algorithms they frequently 

changing number of transactions and minimum support. 

They have introduced the ability to find all the K-iterative elements within only two stages 

of scanning and implementing the entire set of data in the MapReduce Apriori algorithm 

on the Hadoop MapReduce model efficiently and effectively compared with phase I 

algorithms and K-phase algorithms. 

In study [14], the tl014d100k data set was used to obtain the results of the experiment 

generated by the IBM's quest synthetic data generator. The total number of transactions 

is 100000, and each transaction contains 10 items on average. The complete number of 

items is 1000, and the average length of the frequent itemsets is four. 

They evaluated the performance of their proposed algorithm (MRApriori) by comparing 

the implementation time with the other two existing algorithms (one and K-stages). 

In study [14], the author implement the Apriori algorithm on a single device or can say 

stand-alone so there is some chance to execute on a multiple node. Three algorithms have 

been implemented; MRApriori and the other exists two algorithms are present ( one and 
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K stages) based on the Hadoop MapReduce programming model on the platform is 

working on a standalone mode and comparing the performance of those algorithms. 

Figure 2.4. Shows algorithms Performance with different datasets. 
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Figure 2.4. Algorithms Performance with Different Datasets 

They claimed that the results showed that: one-phase algorithm is ineffective and not 

practical, K- phases is effective algorithm and its implementation time close to their 

proposed algorithm. The experiments have been conducted on one machine and the 

combination of production records has not moved from a map factor to reduce the 

operator over the network. Their proposed algorithm, MRApriori, efficient and superior 

to the other 2 algorithm in all experiments. 

The empirical results showed that the proposed Apriori algorithm is effective and exceeds 

the other two algorithms. This study provides insight into the implementation of the 

Apriori over MapReduce model and suggest a new algorithm called MRApriori 

(MapReduce Apriori Algorithm). 
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2.4.5.Improving Apriori algorithm to get better performance with cloud computing 

The study on [30], claims that Apriori algorithm is a famous algorithm for association 

rule mining and that the traditional Apriori algorithm is not suitable for the cloud­ 

computing model because it was not designed for parallel and distributed computing. 

Cloud computing has become a big name in the current era with probability to be main 

core of most future technologies. It has been proven that mining techniques implemented 

with cloud computing model can be useful for analyzing huge data in the cloud. In study 

[30], researchers used the Apriori algorithm for association rules in cloud environments. 

So in this study[30], they optimize the Apriori algorithm that is used on the cloud 

platform. The current implementations have a drawback that they do not scale linearly as 

the number of records increases, and the execution time increases when a higher value of 

k-itemsets is required. 

The authors try to overcome the above limitations, and they have improved the Apriori 

algorithm such that it now has the following features: 

1. The linear scale will have a number of records increases. 

2. The time taken is proximate of the value K. This is anything K-itemsets running 

appears, it will take the same time to given the number of records. 

The implementation time of the existing Apriori algorithm increases exponentially with 

a decrease in the number of support. 

Hence, in order to minimize desired string comparisons and possibly one of the obstacles 

in previous implementation processes that do not attempt to get out in two steps, they will 

now implement a custom key format that would take the same set as the key instead of 

text/string. This will be achieved using the Java Collection library. 

The improvement of the Apriori algorithm on Amazon EC2 (Amazon Elastic Compute 

Cloud) has been implemented to assess performance. Data entry and application files have 
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been saved on S3 (Amazon Simple Storage Service), which is the data storage service. 

Data transfer between Amazon S3 and Amazon EC2 is free making S3 attractive to users 

of the EC2. Output data is also written in S3 buckets at the end. The temporary data is 

written in the HDVs files. 

Amazon Elastic MapReduce takes care of the provision of the Hadoop cluster, running 

the job flow, terminating the job flow, transferring data between Amazon EC2 and 

Amazon S3, and optimizing the Hadoop. Amazon command removes most difficulties 

associated with configuring Hadoop, such as creating devices and networks required by 

The Hadoop group, including the setup monitor, configuration of Hadoop, and the 

execution of the job flow. 

Hadoop job flows are using the Cloud Service command, EC2 and S3 cloud. To start the 

task, a request sent from Host for order. Then, after creating the Hadoop block with the 

main instances and the slave. This group is doing everything, treatment in the job. 

Temporary files created during task execution and output files are stored on the S3. Once 

the task is completed, a message sent to the user. 

Cloud computing is the next development of online computing which provides cost 

effective solutions for storage and analyze a huge amount of data. Extracting data on a 

cloud computing model can greatly benefit us. That is why data extraction technology 

implemented on the cloud platform of many of our data extraction techniques 

The association rule-mining base used as a data mining technology. The Apriori 

algorithm has been improved to fit that for a parallel account platform. Using Amazon 

Web Services EC2, S3 and order for cloud computing, the proposed algorithm reduces 

the execution time of values less than the support count, the authors did not mention or 

explain the algorithm also the result was unclear. 

The current implementation processes has some disadvantage that: 
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1. They did not record in writing as the number of records increases. 

2. The execution time increases when a value higher than k-itemsets needed. 

2.5. Summary 

In this chapter, we presented a review of existing works closely related to proposed 

research and identified some drawbacks of existing approaches. From the previous works, 

there is a need to work on enhancing the performance of Apriori by implementing it in 

parallel using MapReduce. 

Here is a review of the previous improved Apriori algorithms on Hadoop-MapReduce. 

Ref Methodology Description Storage Dataset 
data structure size 

[27] To evaluate the In this study, the Transactional data Large 
performance of their authors implemented for an all-electronics dataset 
study in terms of a parallel Apriori branch and the 
size-up, speedup, algorithm in the T1014DlOOK 
and scale-up to context of the dataset. They 
address massive- Map Reduce replicated it to obtain 
scale datasets. paradigm. 1 GB, 2 Gb, 4 GB, 

MapReduce is a and 8 GB. 
framework for 
parallel data 
processing in a high- 
performance cluster- 
computing 
environment. 

[28] Improved Apriori The aims of this Sample Small 
algorithm on a study were to find and 
theoretical basis. the frequent itemsets mediu 
First, they replace and association rule m 
the transaction in the transactional dataset 
dataset using the database with the 
Boolean matrix min_sup and 
array. min conf 

[29] Improved the Implemented a Word count Small 
Apriori algorithm by revised Apriori Example and 
split the transaction algorithm to extract mediu 
database. frequent pattern m 

itemsets from dataset 
transactional 
databases based on 
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the Hadoop- 
Map Reduce 
framework. They 
used the single-node 
Hadoop cluster 
mode to evaluate the 
performance. 

[14] To compare and They introduced the Dataset was used to Mediu 
prove the good ability to find all k- obtain the mand 
performance of the frequent itemsets experiment large 
newly proposed 2- within only two results generated by dataset 
phase algorithm with phases of scanning IBM' s quest 
previously existing the entire dataset and synthetic data 
1-phase and k-phase implemented that in generator. 
scanning algorithms a MapReduce 
repeatedly changing Apriori algorithm on 
the number of the Hadoop- 
transaction and MapReduce model 
minimum support. efficiently and 

effectively compared 
with the 1-phase and 
k-phase algorithms. 

[30] Traditional Apriori Appling Data mining INA (Information Large 
algorithm is not techniques Not Available) dataset 
suitable for the implemented with 
cloud-computing the cloud-computing 
paradigm because it paradigm can be 
was not designed for useful for analyzing 
parallel and big data in the cloud. 
distributed 
computing. 

Integration of Hence, Hadoop Grocery store sales Large 
Apriori algorithm MapReduce depend dataset dataset 
and MapReduce on HDFS system to 

-= model to evaluate split the data, the ~ ~ Data processing in HDFS size capacity 0 •.. big data environment effect the process 
§:~ by dividing dataset time, by dividing the 
~~ before pass it to the dataset to fit to the 
~~ HDFS. HDFS according to 0 

=- the HDFS block size 0 •.. 
~ and the number of 

datanodes helps to 
speed up the process 
and avoid latency. 
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Chapter Three 

The proposed system 

3.1. Introduction 

This thesis focuses on usage of Apriori algorithm in combination with MapReduce 

Hadoop system. The advantage of Apriori algorithm using MapReduce Hadoop system 

will be more faster to process a large amount of data in parallel computing which is the 

main purpose ofHadoop. 

By working with a large number of computing nodes in the cluster network or grid, a 

potential opportunity for the node to fail is expected, that causes many tasks to be re­ 

performed. On the other hand, the Message Pass Interface (MPI) represents the most 

common framework for distributed scientific computing, but only works with low-level 

language such as C and Fortran. All these problems can be overcome through the 

MapReduce framework developed by Google. MapReduce is a simplified programming 

model for processing widely distributed data and also used in cloud computing. Hadoop 

is a Google MapReduce environment from Apache that is available as an open source 

[31]. 

The research methodology is based on studying and implementing the Apriori algorithm 

MapReduce approach, observing the performance of the algorithm with several 

parameters. 

To overcome all drawbacks of previous models [27 ,28,29, 14,30]; this study proposed a 

new approach of apriori algorithm using MapReduce based on parallel approach model. 

This approach model is built on merging of two models of Apriori algorithms: 

1) Sampling. 

2) Partitioning. 
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3.2. Apriori algorithm models. 

One of the most popular algorithm in Market Basket analysis is Apriori algorithm. In 

order to develop the Apriori algorithm, to reach the best results and to avoid the defects 

there were many implementations developing of the Apriori algorithm. 

3.2.1. Sampling model 

Sampling refers to mining on a subset of a given data. A random sample (usually large 

enough to fit in the main memory) may be obtain from the overall set of transactions, and 

the sample is searched for frequent itemset. 

• Sampling can reduce I/0 costs by drastically shrinking the number of transaction to 

be considered. 

• Sampling can provide great accuracy with respect to the association rules. 

3.2.2. Partitioning model 

Partitioning the data to find candidate itemsets. A partitioning model technique can be 

used that requires just two database scans to mine the frequent itemsets. 

3.3. Apriori algorithm on Hadoop MapReduce 

To apply Apriori algorithm to a MapReduce framework, the main tasks are to design two 

independent Map function and Reduce function. The functionality of the algorithm is 

converting the datasets into pairs (key, value). In MapReduce programming model, all 

mapper and reducer are implemented on different machines in parallel way, but the final 

result is obtained only after the reducer is finished. If the algorithm is repetitive, we have 

to implement a multiple phase of the Map-Reduce to get the final result [32]. 

3.4. The proposed model Partitioned MapReduce Apriori algorithm (PMRA). 

The basic idea behind proposed model is a combination of two Apriori algorithm models 

sampling and partitioning. It goes through several stages, starting with splitting the dataset 

into several parts (partitioning), and using MapReduce function for applying Apriori 
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algorithm on each partition separately from other parts (sampling). The proposed model 

(PMRA) gives pre-results from each partition. These results are changed after each 

MapReduce completes the processing; this is because the system will add the new results 

to the one before. This pre-result gives the ability to make decisions faster than applying 

the whole Apriori algorithm on the complete dataset. 

The size of each partition must fit to the Hadoop system, so we must understand how 

Hadoop distributed file system HDFS work. HDFS is designed to support massive large 

files. HDFS-compliant applications are those deals with large datasets. These applications 

write their data only once but read the one or more times and need to satisfy these readings 

at flow speeds. HDFS supports semantics write-once-read-many to files. The typical 

block size that HDFS uses is 64 Megabytes (MB). Thus, the HDFS file has been divided 

into 64 MB chunks, and if possible, each part will have a different datanode. 

Each single block is processed by one mapper at a time. Therefore, if we have N 

datanodes that mean we need N mapper and this will take more time if we do not have 

enough processors to run N maps in parallel. 

From the previous impediment, the proposed approach partitions out large dataset to 

several partitions of datasets then those, partitions are send to the Hadoop MapReduce 

Apriori implementation. In addition, the result will not eliminate any item, it keeps all the 

results waiting for the other partitions finishing process and add its result to the results 

table and count the items again to give us the new result. 

The Hadoop system works here as a parallel and distributed system if the system have 

one node or more even one cluster or more. 
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3.5. Hadoop MapReduce-Apriori proposed model (PMRA) 

Suppose we know the number of nodes and we wanted to send the partitions to fit to these 

nodes, so each datanode will have only one block to run at a time, here in Hadoop by 

default will be 64MB per block for each node. 

3.6. The PMRA process steps: 

1. Count how many nodes in your Hadoop system. 

2. Partitioning the dataset in blocks based on the equation no (3 .1 ). 

N=~ 
nxBS 

___ (3.1). 

Where: 

N: Number of partitions. 

M: Size of datasets. 

n: Number of nodes. 

BS: Default block size in Hadoop distributed file system (64MB) of 

dataset send to each data-node, which can changed for special purpose to 

128MB or 256MB ... etc. 

3. From the equation no (3 .1 ), we will get the number of partitions that we need to 

partitioning our dataset, so when passing first partition to Hadoop system. The 

Hadoop system, in tum will pass it to the HDFS, the HDFS partition it again to 

the number of datanodes in the Hadoop system and each datanode will has only 

one block. 

The size for each partition will be known from the equation no (3.2). 

PS=~ 
N 

___ (3.2). 
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Where: 

PS: Partition size. 

M: complete dataset size. 

N: Number of partitions. 

4. The Hadoop system receives a block of dataset (Partition), and then this block fits 

directly to its nodes because the size of the partition is depending on how many 

nodes Hadoop has. 

5. Each partition is sent to the Hadoop HDFS as on file and the Hadoop split it to 

parts. Each part is divided to blocks. Each block will be 64MB or less as the 

default size of HDFS block size. 

6. Each input division is assigned to a map task (performed by the map worker) that 

calls the map function to handle this partition, and then the Traditional Apriori 

algorithm is applied. 

7. The map task is design to process the partitions one by one, this will be through 

works on these partitions as files. One block processed by one mapper at a time. 

In mapper, the developer can determine his/her own trade area according to the 

requirements. In this manner, Map runs on all the nodes of the cluster and process 

the data blocks (for the target partition) in parallel. 

8. The result of a Mapper also known as medium or intermediate output written on 

the local disk. Specific output is not stored on HDFS because they are temporary 

data and if they written to HDFS will generate many unnecessary copies. 
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9. The output of the mapper is shuffled (mixed) to minimize the node (which is a 

regular slave node but the lower phase will work here is called a reduced node). 

Shuffled is a physical copying movement of data, which done over the network. 

10. Once all mappers have finished and output their shuffled in a reduced nodes, this 

medium output is merged and categorized. Then they are provided as an inputs to 

the reduce phase. 

11. The second phase of processing is Reduce, where the user can specify his/her 

business area according to requirements. Input to the reducer of all map designers. 

The reduced output is the final output, which written on HDFS. 

12. The reduce task ( executed by reduce worker) is started directly after all maps from 

first partition finished giving a pre-result without waiting for other partitions maps 

to be finished. When the maps from first partition complete their cycle, the second 

maps cycle for the next partition start directly, applying the traditional Apriori 

algorithm on the second maps cycle. The output will be a list of intermediate 

key/value pairs, adding the results from the first maps cycle to the second. And so 

on, until reading the last partition maps. The last cycle must have the same results 

or more for applying traditional Apriori algorithm overall dataset. 

13. When MapReduce function run, each node will processed on one block and send 

the result to the reducer and the reducer will collect the results from the mappers 

to give us the result for this partition alone without waiting for other partitions. 

This result is a pre-result for our complete dataset. 

14. The system will pass the second partition after the map cycle complete and pass 

its results to the reducer. The reducer here will add the new results to the previous 

results. 

15. The system will continue for N cycles until passing all the N partitions. 
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16. The results must be the same results or at least contain the same results if we run 

traditional Apriori algorithm overall dataset directly. 

The problem of mining association rule is to find only interesting rule while running all 

uninteresting rules. Support and confidence are the two interestingness criteria used to 

measure the strength of association rules, but there are another measure can be used and 

it is more powerful which called a lift. 

To understand how the proposed approach works, following points are discussed: 

1. How the Hadoop HDFS data flow work. 

2. The purpose from the proposal. 

3. The situation that our proposal will work on it. 

For inspect these points it assumed the following assumption. 

Suppose we haven nodes and each node have 64MB Block size, and we have dataset 

with size M, and we run a MapReduce procedure on this dataset so we need to copy 

the whole dataset to the HDFS (which will divide it to chunks "Blocks" in 64MB size 

for each). 

Here the HDFS system will have two scenarios: 

1. First scenario is when then (number of nodes) is bigger or equal to the number of 

chunks (Blocks), in this case our proposal not needed. Figure 3 .1 shows the first 

scenario data flow. 
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Figure 3.1. The first scenario data flow. 

Where: 

• DN: DataNode 

2. Second scenario is when then (number of nodes) is smaller than the number of 

chunks (Blocks), in this case the Hadoop system will pass the divided chunks to 

the nodes until Hadoop system pass chunks to all nodes. Running the MapReduce 

procedure and the remaining chunks will wait until any node finished the 

MapReduce procedure. And then, the HDFS will pass one of the reaming chunks 

to the free node. 

This will cause latency because the Hadoop MapReduce function will not 

completed and give results until all the chunks be process. Figure 3.2 shows the 

second scenario data flow. 
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Figure 3.2. The second scenario data flow. 

In the second scenario, the proposed approach will be the solution, especially in analytic 

systems that depends on time and the dataset is large to fit to the system simultaneously. 

Suppose we implement the proposal in the second scenario, the prototype system will 

divide the dataset into partitions to fit into the Hadoop HDFS system and after the Hadoop 

MapReduce completes the first cycle, which applied on the first partition and give us the 

results (Pre-result) the implementation will pass the next partition, which results m 

avoiding the latency. Figure 3.3 shows the proposed model data flow. 
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Figure 3.3. The proposed model data flow. 

3.7. Summary 

In this chapter, the proposed Apriori algorithm approach based on the MapReduce model 

on the Hadoop system presented. First, produce the Apriori algorithm two models 

combination used in our proposal. Second, present the theoretical base behind the 

proposal by explaining how the proposal system work. Finally, assumed two different 

scenarios for handling datasets in Hadoop HDFS to represent when the proposal would 

be efficient. 
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Chapter Four 

Implementation 

4.1. Introduction 

In this chapter, the implementation of the proposed method presented. Described all steps 

of the proposed MapReduce-Apriori using the codes and diagrams. Using the MapReduce 

model to solve the problem of processing a large-scale dataset. First, presented the steps 

of building a Traditional Apriori algorithm and explaining all the steps through this 

program. Second, described the split procedure, and how it works. Third, described the 

steps of converting the MapReduce-Apriori program code to be run as the Hadoop 

MapReduce function and how it works. Finally, presented the merging and comparing 

the prototype using diagrams. The proposed method implemented with the following 

technologies: 

• Python language as a core-programming tool. 

• Cloudera CDH. 

• Anaconda and Jupyter Notebook with Python Language as core programming 

tool to merge and compare for analytic and evaluate the results. 

4.2. The system specifications. 

1. Hardware specifications: 

CPU: Intel Core i5-4570 

Ram: 32GB 

HDD: 500GB 

2. Software specifications: 
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Operating system: Windows 10 Professional edition 

Virtual operating system application : Oracle VM VirtualBox ver. 6.0 

Operating system on virtual machine : CentOS-7-x86 64-DVD-1810 

Hadoop Eco System: Cloudera CDH 5.13 

4.3. Dataset structure 

Our dataset container is a 'csv'; file with the following specifications 

File Name: Sales Grocery dataset. 

Format: CSV. 

File size: 565 MB. 

Documents (Rows): more than 32 million, containing 3.2 million unique orders and about 

50 thousand unique items. 

Fields: four fields for each row (order_id,product_id,add_to_cart_order, 

Reordered). 

Our work will focus on the first two fields ( order _id,product_id), both of these fields 

needed and important for applying Apriori algorithm and the other fields not important 

to the algorithm . 

4.4. Hadoop HDFS file format 

A storage format is just a way to define how information is stored in a file. This is usually 

indicated by the extension of the file (informally at least). 

When dealing with Hadoop's file system not only do you have all of these traditional 

storage formats available to you (as if you can store PNG and JPG images on HDFS if 
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you like), but you also have some Hadoop-focused file formats to use for structured and 

unstructured data. 

Some common storage formats for Hadoop include: 

1. Text/CSV Files. 

2. JSON Records. 

3. Avro Files. 

4. Sequence Files. 

5. RC Files. 

6. ORC Files. 

7. Parquet Files. 

Text and CSV files are quite common and frequently Hadoop developers and data 

scientists received text and CSV files to work upon. However, CSV files do not support 

block compression, thus compressing a CSV file in Hadoop often comes at a significant 

read performance cost. CSV files also easy to export and import from any database. 

Choosing an appropriate file format can have some significant benefits: 

1. Faster read times. 

2. Faster write times. 

3. Splittable files (so you do not need to read the whole file, just a part of it). 

4. Schema evolution support (allowing you to change the fields in a dataset). 

5. Advanced compression support (compress the files with a compression codec 

without sacrificing these features). 

Some file formats designed for general use (like MapReduce or Spark); others designed 

for more specific use cases (like powering a database). 
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From the previous clarification, which specifies the type of data files that can used in the 

Hadoop HDFS system; to deal with the Hadoop HDFS system, the MongoDB dataset 

must be converted to csv file format. 

4.5. Traditional Apriori algorithm implementation 

Work with Apriori algorithm in a large dataset needs some filters and conditions to 

write an efficient code. 

First, when start writing the code using lists and dictionaries which considered more 

than good for a small Dataset , the program run efficiently for a small training set, but 

the system crushes when we try to test the program with a large dataset. The reason for 

system crushes is that, the process of large dataset with that type for data analysis of 

search for frequent items in large dataset contain more than 32 million rows (record) 

with about 50 thousand unique items which need a lot of repetitive loops and a huge 

amount of memory. 

Therefore, start writing the code for Apriori algorithm using what called "Python 

Generators" in python programming language. Generator functions allow developers 

to declare a function that behaves like an iterator, i.e. it can be used for loops. As shown 

in Appendix A. 

4.5.1. Python Generator 

The Python generator is a function, which returns a iterate generator (just an object we 

can replicate) by calling the yield. The yield, may be called a value, in which case this 

value is treated as a "generated" value. The next time you call Next () on a iterate 

generator (that is, in the next step in the for loop, for example), the generator resumes 

execution from where it is called the yield, not from the beginning of the job. Each case, 
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such as local variable values, retrieved and the generator continues to execute itself until 

the next call is called. 

This is a great property for generators because it means that we do not have to store all 

values in memory once. Generator can load and process one value at a time, when finished 

and going to process the next value. This feature makes generators ideal for creating and 

calculating the recurrence of item pairs. 

4.5.2. Traditional Apriori algorithm Design 

Apriori is an algorithm used to identify frequent item sets (in our case, item pairs). It does 

so using a "bottom up" approach. First, identifying individual items that satisfy a 

minimum occurrence threshold. It then extends the item set, adding one item at a time 

and checking if the resulting item set still satisfies the specified threshold. The algorithm 

stops when there are no more items to add that meet the minimum occurrence 

requirement. 

4.5.3. Association Rules Mining 

Once the item sets have been generated using Apriori, mining association rules can be 

started. In the proposal, it is satisfied with looking at itemsets of size 2, the association 

rules will generate of the form {A} -> {B}. One common application of these rules is in 

the domain of recommender systems, where customers who purchased item A are 

recommended item B. 

The reason we will look for 2-itemsets frequency is: 

1. It requires many dataset scans. 

2. It is very slow. 
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3. In particular, 2-itemset will be enough to evaluate our proposal method, 

because the proposal focus on sampling and partitioning using 

distributed system. 

There are three key metrics to consider when evaluating association rules: 

1. Support 

This is the percentage of orders that contains the item set. The minimum support 

threshold required by Apriori can be set based on knowledge of your domain. In 

this example for dataset grocery, since there could be thousands of distinct items 

and an order can contain only a small fraction of these items, setting the support 

threshold to 0.01 % is reasonable. 

2. Confidence 

Given two items, A and B, the confidence measures is the percentage of times that 

item B is purchased and that item A was purchased. This is expressed by the 

equation no (4.1). 

confidence{A-> B} = support{A,B} I support{A} (4.1) 

Confidence values range from O to 1, where O indicates that B is never purchased when 

A is purchased, and 1 indicates that Bis always purchased whenever A is purchased. Note 

that the confidence measure is directional. This means that we can also compute the 

percentage of times that item A is purchased, given that item B was purchased This is 

expressed by the equation no ( 4.2). 

confidence {B-> A}= support{A,B} I support{B} } (4.2). 
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3. Lift 

Given two items, A and B, lift indicates whether there is a relationship between A 

and B, or whether the two items are occurring together in the same orders simply by 

chance. Unlike the confidence metric whose value may vary depending on direction, 

lift measure has no direction. This means that the lift { A,B} is always equal to the 

lift{B,A}, based on the equation no (4.3). 

lifl{A,B} = lifl{B,A} = support{A,B} I (support{A} * support{B})} (4.3). 

Therefore, the lift measuring chosen to locate and determine the frequent items, which 

considered more reliable and reduce the calculating and comparing processes. 

• The prototype system is divided in three main parts: 

• Part A: Data Preparation, which include: 

1. Load order data. 

2. Convert order data into format expected by the association rules function. 

3. Display summary statistics for order data. 

• Part B: Association Rules Function, which include: 

1. Helper functions to the main association rules function. 

2. Association rules function. 

• Part C: Association Rules Mining 

The proposed system uses Apriori algorithm in Hadoop and compares the results with 

Traditional Apriori algorithm. 

First, Traditional Apriori algorithm prototype in large dataset is implemented and the 

results is saved in that file for comparing with the proposed-implemented system. 

The Traditional Apriori algorithm prototype system consists of the following 
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components: 

• The Libraries, which included in the prototype which are: 

pandas, numpy, sys, itertools,collections ,IPython.display,time and random. 

• The prototype includes the following functions: 

1. A Function that load the orders 'csv' file to DataFrame and convert the DataFrame 

(Two-dimensional size-mutable, potentially heterogeneous tabular data structure 

with labeled axes rows and columns) to Series (One-dimensional ndarray with 

axis labels including time series) then returns the size of an object in MB. 

2. A Function Returns the frequency counts for items and item pairs. 

3. A Function Returns the number of unique orders. 

4. A Function Returns a generator that yields item pairs, one at a time. 

5. A Function Returns the frequency and support associated with item. 

6. A Function Returns the name associated with item. 

7. A Function Association rules, which include the following producers: 

a) Calculate item frequency and support. 

b) Filter for items below minimum support. 

c) Filter for orders with less than two items. 

d) Recalculate item frequency and support. 

e) Get item pairs generator. 

f) Calculate item pair frequency and support. 

g) Filter order for item pairs those below minimum support. 

h) Create table of association rules and compute relevant metrics. 

i) Return association rules sorted by lift in descending order. 

8. A Function Replaces item ID with item name and displays association rules. 

The above steps are shown in Figure 4.1. 
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Start 

Read dataset to a dataframe 

Convert dataframe to series 

Remove unique orders (orders less than 2 
items) 

Calculate frequancy and confidence for 
items pairs 

No 

Remove Item 

Yes 

Calculate lift for item pairs 

No 

Remove Item 

Yes 

Return sorted table by lift in decending 
order 

Replace Item ID with Item Name 

Figure 4.1 Traditional Apriori model diagram. 
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4.6. The implementation of proposed PMRA 

This section contains two main tasks: 

• First task is splitting the dataset to several partitions. 

• Second task is running MapReduce Apriori algorithm for each partition separately 

from other partitions. 

4.6.1. Dataset splitter 

The idea here is very simple, the dataset (the orders file) in 'csv' format with 

a standard separated ',', this file (the orders file) contains more than 32 

million line stored in a file with size 565 MB, and the prototype system uses 

a Hadoop system with a single node for testing purpose. For explanation, if 

we used 64 MB block size in HDFS that means we will divide the file size 

by 64MB, which will be: 

Split size= 565/64 = 8.82 

It means, that the dataset file is split to nine files at least. 

In addition, we have 32 million line, so we need to divide the dataset to 10 

files at least. Which means, each file contains 3.3 million line. As shown in 

Appendix D. 

The structure of the splitter prototype is shown in figure 4.2 and explained 

in the following steps: 
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Reading d1~~:sel line by l4----------~ 

NO 

if line count >= 3.Smillion 

Create a splil file in csv formal 

NO 

~----------c If reach the last line of the dataset 

yes 

Figure 4.2: The splitter diagram. 

1. Reading the dataset file using standard input. 

2. Count the lines entered by standard input until reach the first 3.3 

million line, then create the first file using the same file name for the 

dataset and add number 1 at the end of the file name. 

3. Start count from the line comes next the line we entered in the file 

before and create the second file using the same file name for the 

dataset and add number 2 at the end of the file name. 

4. Continue with the same procedure until dataset file reaches the last 

line. At the end, 10 csv files present the result of the splitter. 
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4.6.2. Partitioned MapReduce Apriori algorithm prototype PMRA. 

In Hadoop MapReduce, there are some changes comparing with the Traditional Apriori 

algorithm prototype, which illustrated in section ( 4.5). 

The obvious difference is needed to be consider is the way the data is feed to the 

prototype system. 

• The MapReduce architecture needs that map and reduce jobs are written as 

programs that read from standard input and write to standard output. 

• Hadoop reads input files and streams them to standard output. 

• For each line in standard input, Map function is called. 

• Map is responsible for interpretation the input and formatting the output. 

• Maps writes lines to standard output. 

There are several techniques to write MapReduce program depending on the purpose of 

it, like data cleansing, data filtering, data summarization, data joining, text processing and 

computing. 

Since this thesis, focuses on data partitioning before pass it to the HDFS. Therefore, data­ 

cleansing technique in a simple format is used. As shown in Appendix B. 

The MapReduce Apriori algorithm partitions prototype system is shown in Figure 4.3 and 

it includes the following functions: 
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less than 2 items) 

Splitter ( according to the 
HDFS datanodes size and 

number 
Calculate frequancy and 
confidence for items pairs 

No 
Passing sash split to the 
HDFS individual and pass 
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Take the output from Map 
function as input to Reduce 
function and pass it as output 
from Reduce function and the 
Results stored to the HDFS 

Replace Item ID with item Name 

End 

Figure 4.3: The proposal PMRA diagram. 
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1. Split the dataset according to the HDFS capacity. 

2. Pass first split (partition) to the HDFS. 

3. The HDFS takes care of the passed partition and split it again to the datanodes. In 

our case and for experimental purpose is used a single node. Therefore, the HDFS 

pass it directly without splitting and the partition will fit directly to the datanode 

because it is split before passing to HDFS according to HDFS capacity in step 1. 

4. Hadoop streaming function runs the MapReduce function. 

5. The MapReduce function executes the map function first, which includes the same 

procedures like the Traditional Apriori algorithm with some modifications. 

6. The main modification is the way feeding the data to the map function and how 

the map function outputs the results. Both of input and output must use standard 

input/output functions. 

7. The reducer function here in cleansing technique takes the output from the map 

function as an input and directly pass it as output to HDFS. 

8. Taking the results from HDFS and returns association rules sorted by lift in 

descending order. 

9. Replaces item ID with item name and displays association rules. 

4.7. The merge and comparison process. 

Applying both prototypes represented before ( in sections 4.5 and 4.6) creates the result 

files, one result file for the whole dataset from experimental one in section ( 4.5) and ten 

results files from the experimental two in section ( 4.6). 

The result files have the same headers, but with different values. The result file from 

applying the prototype in section ( 4.5) contains information about the whole dataset, but 

the results files from applying section (4.6) each one contains information about the 

partition it belongs to. Table 4.1 shows the results tables. 
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The comparing process compares the values obtained from experimental one in section 

( 4.5) with the results files obtained from experimental two in section ( 4.6) sequentially. 

After merging each result file with the result file from the previous cycle. The process of 

comparing the results file of the Traditional Apriori algorithm will continue with each 

merge file form the proposed MapReduce Apriori algorithm until the merge of the results 

files is completed. 

For comparison purpose, some operations to speed up the process are used: 

1. Comparison is conducted between itemA, itemB and lift. 

2. All lift values less than '1' is eliminate. As shown in Appendix C section A. 

Start 

Read MapReduce Apriori 
result file n 

Read MapReduce Apriori 
result file n+l 

Reindex, remove duplicate 

N~E 
Yes 

End 

Figure 4.4: The merge diagram 
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In addition, in merge file some operations are performed as shown in Appendix C section 

B: 

1. After merging the result files in one DataFrame, it is noted that the new merged 

DataFrame has duplicated indexes. 

2. Re-index the sorted merged DataFrame to solve the duplicated indexes issue. 

3. Sorting the merge DataFrame by higher lift. 

4. Search for duplicated rows depending on the itemA and itemB columns, keep the 

first row of frequent items, and drop the other (second row) because after sorting 

the first row of frequent items would have the higher lift. These operations are 

shown in Figure 4.4. 

4.8. Summary 

This chapter explained the implementation of the proposed model. First, the Traditional 

Apriori algorithm on two frequent itemsets is implemented. Second, the Association 

Rules Mining and the three key metrics to consider when evaluating association rules are 

presented. Third, the proposed dataset splitter and the MapReduce Apriori algorithm for 

each part separated from other parts are implemented. Finally, the merge and comparing 

process implemented. 
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Chapter Five 

Experiments, Results and Discussion 

5.1. Introduction 

This chapter, explores the dataset structure, presents, explains and analyzes the 

experimental results. It starts by explaining the experiments and results of the traditional 

model and the proposed model. Then, it demonstrates the measurement of performance. 

Finally, it discusses and compares the experiments results together through time 

execution to generate strong association rules using the lift factor in the association rules 

mining using Apriori algorithm. 

5.2. Experiments Infrastructure. 

To test the proposal performance, there are two main prototypes. First one, for traditional 

Apriori algorithm experiment and the second one for Partitioned MapReduce Apriori 

algorithm (PMRA). 

5.3. Traditional Apriori algorithm Experiment 

Applying the dataset to the Traditional Apriori algorithm on 2-items frequent and save 

the results to 'csv' file. The result file contains the following details: 

1. Traditional Apriori algorithm prototype generates 12 fields (Transition Number, 

itemA, itemB, freqAB, supportAB,freqA, supportA, freqB, supportB, 

confidenceAtoB, confidenceBtoA, lift), these fields contain calculated data 

extracted from the given dataset. 

2. The result file contains around (48752) rows. 

3. These rows contain all the frequent two items. 

4. These rows sorted in descending order according to lift column. 
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5. The most important rows in this experiment are the rows with 'lift' field value 

equal or greater than '1', which were the first 208 rows. 

5.4. PMRA experiment 

In this experiment, applying the dataset on Hadoop eco system. As it mentioned earlier 

in section (4.6.2.), for experimental purpose proposed method is applied on Hadoop with 

a single node cluster. 

This single node can receive 64MB (the default size of the HDFS block in the datanode) 

of dataset and passes it to the MapReduce function implemented in section ( 4.6). 

5.4.1. Splitting the dataset 

As explained in section (4.3), the dataset size is 565MB. So when splitting the dataset to 

a 64MB or fewer, the results file from the splitter was 10 files. 

These files had the same name of the original dataset added to the end of the splits 

partitions name a number 000, 001 until the last one 009 (order_products-000.csv, 

order _products-001. csv, ... order _products-009. csv). 

5.4.2. Applying the MapReduce Apriori algorithm on the splits partitions 

After splitting the dataset to fit in the HDFS system, in this experiment there are 10 files 

to pass to the HDFS respectively. 

The process is illustrated in the following steps 

1. Copy the first split file to the HDFS. 

2. Run the implemented MapReduce Apriori algorithm function. 

3. The MapReduce creates result file. 

4. This result file is compared with the result file generated from the traditional result 

file on the original dataset. Table ( 5 .1) summarize this operation. 

62 



t9 

• • • • • • • • • 
'Tl "'O o o 

~ 
.... 

~ ~ 
rn 

::r 

n o: § 
'Tl 

~ ~ ~ 
X @ 

(1) 

(') ~ 

~ 
X >--3 ..0 

tr: (') 
,-..., 

~ ""l::i ~ tr: >--3 r./'J ~ ~ 

..., ~ 
~ "T:I Cll Cll 

• • Cll o s::: trl ..., 

s .... ~ 
(1) 6' .-+ 0 o ..0 6' 

;s· 
(1) 

~ ~ 
.-+ 3 0 a-a (') 

(1) g ::i 3 i:: 
.... ~ ~ 

"O (1) 
.-+ 

Cll 
..., .-+ (1) Cll 

Cll a "O 0.. ;s· 
Cll 

s, i:: ..., 0 a 3 ::i 

I:=. (1) ~ er (1) ::i 
::i 

.-+ Cll §: X 
Cll i:: c 

s Cll .... .-+ a· 3 3 

,-...J 0 ::i & 
(1) §' 

0 .-+ 
(') er er 

::r 
i:: ;:;: i:: 

..., 

0 ::ti 3 '-< 
(1) (1) 

(1) (1) 

(1) 

.-+ 
..., 

er ;s· 
Cll 

..., 

.-+ n 8" 
@ 0 

er (1) er t= ~ 0 

::i 
(1) i (1) ::i ..., ~ 

....., 

Cll 
~ 

:"' ? 
.-+ ..., 

s ~ 
.-+ (1) ::ti 

3 "'O §' ~ 
..., (1) 

.-+ Cll 0 
(1) (1) (') n 3 

Cll 

::ti i:: (1) v ::i (1) (1) ::r a 

n I:=. .-+ ::i ~ (1) .-+ 
.. g .-+ a· ..., ::+i a-a 
""l::i 

(1) 
::ti 

8" 0 
::r Cll (1) 

0 
(1) 

(1) 
Cll e ..., s· n 

Cll 
(1) 

a ~ 
..., i:: 3 (') - ::ti (1Q 

(') 
.-+ 

(1) er 0 ~ 
.-+ ,-...J ::i ..., ~ ::i ::ti 

::r ::r .-+ (1) s· 0.. ci" :!. 
(1) (1) cfci Cll 

V, 
i:: 

..., Cll ::i 

::;3 
..., (1) :=;:' 

(1) (1) (1Q 

(1) 
Cll "O 

Cll 0 c 
.-+ 

~ i:: 
....., ::ti - ~ ::r 

0.. :=;:' "O ci" 
.-+ ; (1) 

::;.· ~ ::ti ~ - 
;s· ::ti ~ ~ ci" ? 

::i ~ 
::s n ::;.· 0.. 
e. Cll 

~ 
t::;, 

;s· 
~ 

::s s· 

t 
::i 0.. V, 

0 Cll ::i 0.: 
(1) 

..., 3 ~ .-+ 
(') 

;s· ::+i c=;· 
(1) 0 

.-+ 
::i ::i 

:!. ::r (1) ~ .-+ 
(1) 

..., - c=;· 
0.. 

~ 
~ 

3 a e. ~ 

~ (1) ~ 
0 

..., ..., 

t ~ 
CIC/ V, 0 
(1) s· ~ 
.-+ Cll 

(1) 
0 V, s· 

~ 
.-+ t= ::r er Cll 

(1) 
(1) @ t= 

..., 0 er 
§' ..., Cll ..., 

(iQ' 
i:: 

(1) - (1) 

s· .-+ V, 

::i ::ti s .-+ e. ~ ~ 
.-+ 

0.. ::ti 

~ 
ci" 

V, 
(1) 
r- 

~ 
(1) 
V, s 'Tl .-+ •••• 
lo ci" 
0 
0 

- 
~~ 
- 0 -....,l ~ 
N v, 
,-- - 
V, 

~ 
0 - -...J ~ N V, 

N "T:I ..., 
N (1) 
-...J .g, 

'° tTl l,.) 
0 

~ 0 
N r./'J 00 

0 
~ 0 

0 X 0 
~ 0 

- 
o 

00 § l,.) - -....,l tr: 
~ 

,....._ i----- 
o -...J r./'J 

?" ~ 
N r./'J -~ 
l,.) 
l,.) "'O 

§~ 
0 
0 

- ""l::i 00 ;.... v 
-....,l 

I I J 

- 



These abbreviations are used in the next tables. 

The previous steps are the first cycle to our experiment. The following steps 

illustrate the second cycle in the experiment. 

1. Copy the second split file to the HDFS. 

2. Run the implemented Apriori MapReduce function. 

3. The MapReduce create result file. 

4. This result file from the second cycle will merged with the result file from the 

previous cycle ( first cycle). 

5. After merging the results files and sort them according the descending order 

of the 'lift' column. 

6. This merged result file compared with the result file generated from the 

traditional result file on the original dataset. 

Table (5.2) summarize the two cycle operations. 
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Applying the same procedures to all the dataset splits partitions will generate 

results can be summarized in table (5.3). 

5.5. Discussion 

The result of the proposed model experiment was compared with the result of Traditional 

Apriori algorithm experiment. The results and information, which demonstrated in table 

(5.3), illustrate and discuss through execution time, compatibility between frequent items 

in result files after each merge to evaluate our proposal efficiency. 

5.5.1. Execution Time 

One of the most important factors consider in the experiment is the execution time, and 

here explore it from several points. 

Table 5.4: Execution separated and merged time for result files 

File ExcTS MExcT 
Result 000 93.0028 0.0000 
Result 001 93.1667 186.1695 
Result 002 95.8360 282.0055 
Result 003 95.5155 377.5210 
Result 004 96.5416 474.0626 
Result 005 95.3093 569.3718 
Result 006 95.7507 665.1225 
Result 007 96.0524 761.1749 
Result 008 94.8186 855.9935 
Result 009 90.8185 946.8120 

Result 583.7603 

As shown in table (5.4), the first column in the table shows the result file name, the second 

one shows the execution time separately for each split partition passed to the Hadoop 

system in a single node cluster. The third one shows the merged execution time for 

merged result files in a single node cluster and the last row shows the execution time for 

the result file for the Traditional Apriori algorithm. 
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From this table it concluded that the highest execution time in separated results file is in 

the fifth file (Result_004 = 96.5416 seconds) and the lowest execution time in separated 

results file is in the last file (Result_009 = 90.8185 seconds). Both of them is less than the 

execution time for the result file from the Traditional Apriori algorithm (Result = 

583.7603 seconds). 

On the other side, the merged execution time for merged result files is (946.8120 seconds) 

which bigger than the execution time for the result file for the Traditional Apriori 

algorithm (583.7603 seconds). 

The different between the execution time in both experiments is that the first experiment 

proceed on a real hardware system and the second experiment on virtual system and also 

run on Hadoop system containing single node and Hadoop needs to run HDFS and Yam 

services which means more load on the hardware system. 

Figure (5.1) shows the difference between the ExcTS and the MExcT columns, the 

execution time of the results file in a single node is increased after every merging until it 

exceed the execution time of the Traditional Apriori algorithm after the fifth result file, 

and that mean after 50% of the dataset. 
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Figure 5.1: Difference between the ExcTS and the MExcT columns 

5.5.2. Testing compatibility between the separated result file and the Traditional 

A priori. 

In table (5.5), the first column shows the result file name, the second one shows the 

separated execution time in seconds and the third column shows the compatibility 

between the separated result file and the Traditional Apriori result file which means how 

many frequent items in the separated files after merging appears in the result file for the 

Traditional Apriori. 

It is easy to noting that with each merged result files the compatibility is increased. It is 

almost beginning with high score in the first result file (Result_ 000 = 83 .17% ), and drive 

up in increasing manner with every merging process until it reaches the full compatibility 

in the fifth result file (Result_004 = 100%). Figure (5.2) shows the execution time for 

separated results file and the compatibility with Traditional Apriori. 
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Table 5.5: Compatibility between the separated results and the Traditional Apriori 

File ExcTS CMRISR 
Result 000 93.0028 83.17 
Result 001 93.1667 94.71 
Result 002 95.8360 99.52 
Result 003 95.5155 99.52 
Result 004 96.5416 100.00 
Result 005 95.3093 100.00 
Result 006 95.7507 100.00 
Result 007 96.0524 100.00 
Result 008 94.8186 100.00 
Result 009 90.8185 100.00 

Compatibility between the separated 
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Figure 5.2: Execution time for separated results file and the compatibility with 
Traditional Apriori 

5.5.3. Traditional Apriori result VS Proposed PMRA Results. 

Also with a high compatibly between the merged results file there is incompatibility 

appears in separated results file. 

As shown in table (5.6), the Traditional Apriori algorithm gives us a 208 frequent for two 

itemset. In the first separated result file there are 227 frequent for two itemset and there 
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is about 83.17 % of Traditional Apriori algorithm founded in first separated result file 

(173 the identical rows). That is mean, there is another frequent items appears in the 

separated result file from section 5.4, that are not belong to the Traditional Apriori result 

file from section 5.3. 

Table 5.6: Frequent items, compatibly and incompatibility. 

File Freq I CMRISR CSRISR 
Result 000 227 83.17 76.21 
Result 001 295 94.71 66.78 
Result 002 355 99.52 58.31 
Result 003 380 99.52 54.47 
Result 004 410 100.00 50.73 
Result 005 441 100.00 47.17 
Result 006 459 100.00 45.32 
Result 007 480 100.00 43.33 
Result 008 493 100.00 42.19 
Result 009 504 100.00 41.27 

Result 208 

These incompatible rows (incompatible rows mean nonidentical frequent items) in this 

separated result file about 54 rows so the compatibility between the separated result file 

and identical rows ( identical rows mean identical frequent items) in separated result file 

here is about 76.21 %. 

The second separated result file and after merged the result with the first separated result 

file has more frequent items which about 295 rows, 94.71 % from the Traditional Apriori 

algorithm frequent items were found in the merged these two separated result files. But 

also there are more frequent items in this merged are not in the Traditional Apriori 

algorithm which about 98 rows. Therefore, the compatibility between the merged 

separated result files and identical rows in separated result file here is about 66. 78 %. 
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With each merged the identical rows (identical frequent items) is increased with the rows 

in the result file from the Traditional Apriori algorithm but the incompatibility between 

results files also increased, that is with each merging process, there are more 

incompatibility frequent items appear in the merged result files. 

Figure (5.3) shows that the relation between compatibility and incompatibility, and from 

it and from the table (5.6) it concluded that whenever the compatibility is increased the 

incompatible is increased too. 

Frequent items Compatibility and Incompatibility 
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Figure 5.3: Frequent items Compatibility and Incompatibility 

5.5.4. Enhance execution time. 

In experiment in section (5.4), applying the implementation on a single node cluster; both 

table (5.7) and figure (5.4) shows the execution time for each partition separately. 
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Table (5.7): The execution time for each partition separately. 

File ExcTS 
Result 000 93.0028 
Result 001 93.1667 
Result 002 95.8360 
Result 003 95.5155 
Result 004 96.5416 
Result 005 95.3093 
Result 006 95.7507 
Result 007 96.0524 
Result 008 94.8186 
Result 009 90.8185 

Exe. Time Seperatly 
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Figure (5.4): The execution time for each partition separately. 

Now suppose that the system has two-nodes, which means that the partitions will be 

five partitions and first partition contains both datasets from previous experiment in 

section (5.4.1). 

The first and the second partitions contain 6600000 rows and when pass this file to 

HDFS it will be split the file in to two blocks, each block belongs to one of the two 

datanodes. 
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Each node run the MapReduce function on its own dataset block at the same time, if 

one node finished the Map function it sends the results to the reduce function , but the 

reduce function will wait until the other datanode finished before writing the results 

to the HDFS again. 

From that, it concluded that the execution time would be the highest execution time 

and that is 93 .1667 seconds. 

As the previous assumption, we can generate execution time for a two-node system 

as shown in table (5.8). 

Table (5.8): Two-node execution time 

File Exe TS Merged 
Exe. Time 

Result 000 93.166 0 
Result 001 95.83 188.996 
Result 002 96.5416 285.5376 
Result 003 96.0528 381.5904 
Result 004 94.8186 476.409 

Result 583.7603 

In addition, to reach the 50% of data (which means reach the full identical rows with 

the Traditional Apriori), we must apply the proposal prototype in section (5.4.2) at 

least until the third result file. 

The third result file execution time according to table (5.8) is 285.5376 seconds, and 

it is about 48.91 % comparing to Traditional Apriori execution time. Figure (5.5) 

shows two-node assumption execution time. 
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Two-nodes assumption execution time 
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Figure (5.5): Two-node assumption execution time 

5.5.5. Rules comparison between Traditional Apriori and proposed PMRA 

Based on the results from various statistical and data mining techniques the findings that 

behavioral variables are better predictors of profitable customers were confirmed using 

the Apriori Algorithm we want to find the association rules that have minimum support 

(0.01) and minimum lift= 1 in our large dataset. 

Best rules found in applying Traditional Apriori algorithm was 208 rule and this is the 

top four rules according to descending sort measure lift: 

I. Orgaric Strawberry Chia Lowfat 2% Conage Cbeeso=YES 1163 => Orgaric Cottage Cheese Blueberry Acai Chia-YES 839 conf:(026 < lift:(9.44 )> 

2. Grain Free Turkey Fonnula Cat Food-YES I 809 --> Grain Free Turkey Fonnula Cat Food-YES 879 conf:(0.175 )< lift:(6.02 )> 

3. Organic Fruit Yo girt Smoothie Mixed Berr)=YES 1518 => Apple Blueberry Fnit Y ogirt Smoothie-YES 1249 conf:(022) < lift:(l .54 > 

4. Nonfat StrawberryWithFnit On The Bottom Greek Yogurt-YES 1666 => 0%, Greek, Blueberry on the Bottom Yogurt-YES 1391 cori°:(024 )< lift(l.31)> 
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Best rules found in applying PMRA on 50% of the dataset was 441 rule and this is the 

top four rules according to descending sort measure lift: 

L Organic Strawberry Chia Lowfat 2% Conage Cheese=YES 595 ==> Organic Cottage Cheese Blueberry Acai Chia=YES 432 conf(0.28) < lift:(9.7 )> 

2. Grain Free Turkey Formula Cat Food=YES 945 => Grain Free Turkey Formula Catfood=YES 444 conf(0.175) < lift:(5.95 )> 

3. Organic Grapefruit Ginger Sparkling Yerba Mate=YES 1518 => Cranberry Pomegranate Sparkling Yerba Mate=YES 844 conf(0.2 1) <lift:(5. 77)> 

4. Organic Fruit Yogurt Smoothie Mixed Berry=YES 755 => Apple Blueberry Fruit Yogurt Smoothie=YES 649 conf(02 3) < lift:(5.44)> 

Comparing the two models, we found that all the 208 rules from Traditional Apriori 

algorithm were found in applying 50% of dataset on PMRA model on single node cluster. 

5.6. Summary 

This chapter presented and analyzed the experimental results. First, it presented the 

dataset structure, the experiments infrastructure, the Traditional Apriori algorithm 

experiment and the PMRA experiment. Second, it discussed the results from different 

perspective. Finally, it explained the improvement in the execution time and speedup for 

experiments in single node and two nodes cluster assumption. 
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Chapter Six 

Conclusion and Future Works 

This chapter concludes the thesis, clarifing its advantages and drawbacks , also it 

suggests some future works to improve the proposal implementation. 

6.1 Conclusion 

The past decade has been characterized by the continued growth of the technological 

industry. The results are seen as a significant increase in data generation. A phenomenon 

commonly referred to as large data or big data revolution. The widespread common 

interest in the ability to analyze this massive amount of data today is a key issue that has 

led to an increase in technologies geared towards, thereby local data as its main 

advantage. 

Big data is a vast research area, and parallel-distributed is often one of the most effective 

techniques for solving problems and discovering hidden information patterns. Among 

these new technologies for parallel-distributed programming and computing, the 

Hadoop/MapReduce which widly accepted framework. 

Processing big data in parallel-distributed systems bring many opportunities, but with 

these opportunities come many challenges. Challenges including but not limited to 

latency, security (security restrictions to process data on the cloud systems like Amazon 

Web Services (AWS) or alternative solutions), privacy and local system capacity (local 

system capacity can not handle processing data in reasonable time). 

The PMRA proposed showing high promises solution to found the best rules in large 

datasets using parallel and distributed system. 
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This study, suggests promised alternative solution to these challenges by dividing data 

into parts that can fit into the local system. Using simple words, this study can be 

described as a partitioning before partitioning. 

The basic idea behind this study, is that the size of the data is greater than the size of the 

system storage capacity to process in timely manner. The study suggests a new method 

depends on the HDFS system capacity. 

Through this study and based on the conducted experiments and their results, it concluded 

that the implementation of the proposed approach to address 50% of the data, these results 

can help to make fair decisions. On other hand, better results could be obtained if the 

proposed approach is implemented in real Hadoop system, so we can overcome the delay 

results from adoption of virtual environment. 
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6.2 Future work 

To compensate the drawbacks in this study, the auther suggest applying the same 

implementation using another factor instead oflift. Using confidence measure instead of 

lift as a factor to solve the percentage of false data. 

In addition, this study focused on HDFS, and using of MapReduce function in a simple 

architecture, it suggested more focus on MapReduce function design. 

There is another technology in Hadoop eco system called spark, applying the proposal 

through it would improve the performance. Spark achieves high performance for both 

batch and streaming data, using a state-of-the-art DAG scheduler, a query optimizer, and 

a physical execution engine. 
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Appendix A 

Traditional Apriori algorithm implementation code 

This code in python language represents the Traditional Apriori algorithm 

implementation for two frequent itemset. The code was written in python programming 

language and can be executed on any operating system. The code calculates the two 

frequent itemset, the support, the confidence, the lift and exports all the results to the 

screen and to a CSV file. In addition, it calculates the execution time for the whole 

procedure. 

# Python code for Traditional Apriori algorithm implementation 

import pandas as pd 

import numpy as np 

import sys 

from itertools import combinations, groupby 

from collections import Counter 

from !Python.display import display 

import time 

import random 

#Time before the operations start 

then = time. time() 

# Function that returns the size of an object in MB 

def size( obj): 

return" {0:.2f} MB".format(sys.getsizeof(obj) I (1000 * 1000)) 
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orders =pd.read_ csv('order _products_train.csv') 

print('orders -- dimensions: {O}; size: {1}'.format(orders.shape, size(orders))) 

display( orders.head()) 

# Convert from DataFrame to a Series, with order_id as index and item_id as 

value 

orders= orders.set_index('order _id')['product_id'].rename('item _id') 

display( orders.head( 10)) 

type( orders) 

print('dimensions: {O}; size: {1}; unique_orders: {2}; unique_items: {3}' 

.format( orders.shape, size( orders), len( orders.index. unique()), 

len( orders. value counts()))) 

# Returns frequency counts for items and item pairs 

def freq(iterable ): 

if type(iterable) == pd.core.series.Series: 

return iterable. value_ counts().rename("freq") 

else: 
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return pd.Series(Counter(iterable)).rename("freq") 

# Returns number of unique orders 

def order_ count( orders _item): 

return len( set( orders_ i tern.index)) 

# Returns generator that yields item pairs, one at a time 

def get_ i terns _pairs( orders_ i tern): 

orders_item = orders_item.reset_index().values 

for order_id, order_object in groupby(orders_item, lambda x: x[O]): 

item_list = [item[l] for item in order_object] 

for item _pair in combinations(item _list, 2): 

yield item _pair 

# Returns frequency and support associated with item 

def merge_ i terns_ stats( items _pairs, i terns_ stats): 

return (items _pairs 

.merge(items_stats.rename(columns={'freq': 'freqA', 'support': 'suptA'} ), 

left_ on='item _A', right_ index=True) 
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.merge(items _ stats.rename( columns={'freq': 'freqB', 'support': 'suptB'} ), 

left_on='item_B', right_index=True)) 

# Returns name associated with item 

def merge _item_ name(rules, item_ name): 

columns= ['itemA' 'itemB' 'freqAB' 'suptAB' 'freqA' 'suptA' 'freqB' 'suptB' ' ' ' ' ' ' ' ' 

'confAtoB' "confBtoA" 'lift'] ' ' 

rules= (rules 

.merge(item _ name.rename( columns= {'item_ name': 'iternA'} ), 

left_ on='item _ A', right_ on='item _id') 

.merge(item _ name.rename( columns={'item _ name': 'itemB'} ), 

left_ on='item _ B', right_ on='item _id')) 

return rules[columns] 

def association_ rules( orders _item, min_ sup): 

print("Starting orders_item: { :22d} ".format(len(orders_item))) 

# Calculate item frequency and support 

items stats = freq( orders_ i tern). to_ frame("freq") 

items_stats['support'] = items_stats['freq'] I order_count(orders_item) * 100 
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# Filter from orders_item items below min support 

qualifying_items = items_stats[items_stats['support'] >= min_sup].index 

orders item = orders_item[orders_item.isin(qualifying_items)] 

print("Items with support>={}: {:15d}".format(min_sup, len(qualifying_items))) 

print("Remaining orders_item: { :21d} ".format(len(orders_item))) 

# Filter from orders item orders with less than 2 items 

order size = freq (orders_ i tern. index) 

qualifying_ orders = order size[ order size>= 2].index - - 

orders item = orders_ i tern[ orders_ item.index.isin( qualifying_ orders)] 

print("Remaining orders with 2+ items: {: 11 d} ".format(len( qualifying_ orders))) 

print("Remaining orders_item: { :2ld} ".format(len(orders_item))) 

# Recalculate item frequency and support 

items stats = freq( orders_ item). to_ frame("freq") 

items_ stats['support'] = items_ stats['freq'] I order_ count( orders _item) * 100 

# Get item pairs generator 

item _pair _gen = get_ items _pairs( orders_ item) 
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# Calculate item pair frequency and support 

items _pairs = freq(item_pair_gen).to_frame("freqAB") 

items_pairs['suptAB'] = items_pairs['freqAB'] I len(qualifying_orders) * 100 

print("Item pairs: { :3 ld} ".format(len(items _pairs))) 

# Filter from items_pairs those below min support 

items _pairs = items _pairs[items _pairs['suptAB'] >=min_ sup] 

print("Item pairs with support>= {}: {: 10d} \n".format(min_sup, len(items_pairs))) 

# Create table of association rules and compute relevant metrics 

items _pairs = items _pairs.reset_index().rename( columns= {'level_ O': 'item_ A', 

'level_ I': 'item_ B'}) 

items _pairs= merge _items _stats(items _pairs, items _stats) 

items _pairs['confAtoB'] = items _pairs['suptAB'] I items _pairs['suptA'J 

items _pairs["confBtoA"] = items _pairs['suptAB'] I items _pairs['suptB'] 

items _pairs['lift'] 

items _pairs['suptB']) 

= items _pairs['suptAB'] I (items _pairs['suptA'] * 
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# Return association rules sorted by lift in descending order 

return i terns _pairs. sort_ values('lift', ascending= False) 

# Calling the association_rules function and pass the orders variable and the 

minimum support threshold 0.01 

rules = association_ rules( orders, 0.01) 

# Replace item ID with item name and display association rules 

item name = pd.read_ csv('products.csv') 

item_ name = item_ name.rename( columns= {'product_id':'item _id', 

'product_ narne':'item _name'}) 

rules_ final = merge_ item_ name( rules, item_ name). sort_ values('lift', ascending= False) 

display(rules _ final) 

# Time after it finished 

now = time. time() 

# Calculate the execution time and print the results to the screen 

print("It took: ",now-then," seconds") 

# Print the Results to CSV file 

rules_ final. to_ csv('resulttest.csv', sep='; ') 

90 



Appendix B 

PMRA implementation code 

This code in python language represents the PMRA implementation for two frequent 

itemset. The code was written to be executed Hadoop environment as a mapper function. 

The code calculates the two frequent itemset, the support, the confidence, the lift and 

export all the results to the HDFS in CSV file. Unlike the previous Traditional Apriori 

algorithm implementation code in Appendix A, the coding has some rules must be 

obtained when written to be run in Hadoop MapReduce: 

1. There is no printing on the screen while the program is run; all the results will be 

written in HDFS when the whole procedure is completed. 

2. The input and the output must be in standard input/output format. 

3. Replacing item ID with item name must be done outside the MapReduce function 

because it needs to call external file. 

# Python code for Traditional Apriori algorithm implementation 

! /usr/bin/env python 

# For Python 2.7 

import pandas as pd 

import numpy as np 

import sys 

from itertools import combinations, groupby 

from collections import Counter 
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from !Python.display import display 

# Function that returns the size of an object in MB 

def size( obj): 

return" {0:.2f} MB".format(sys.getsizeof(obj) I (1000 * 1000)) 

orders =pd.read_ csv('sys.stdin') 

# Convert from DataFrame to a Series, with order _id as index and item _id as 

value 

orders = orders.set_index('order _id')['product_id'] .rename('item _id') 

# Returns frequency counts for items and item pairs 

def freq(iterable ): 

if type(iterable) == pd.core.series.Series: 

return iterable. value_ counts().rename("freq") 

else: 

return pd.Series(Counter(iterable)).rename("freq") 

# Returns number of unique orders 

def order_ count( order_ item): 

return len( set( order item.index)) 

92 



# Returns generator that yields item pairs, one at a time 

def get_item _pairs( order _item): 

order _item= order _item.reset_index().values 

for order_id, order_object in groupby(order_item, lambda x: x[O]): 

item_list = [item[l] for item in order_object] 

for item _pair in combinations(item _list, 2): 

yield item _pair 

# Returns frequency and support associated with item 

def merge _item_ stats(item _pairs, item_ stats): 

return (item _pairs 

.merge(item_stats.rename(columns={'freq': 'freqA', 'support': 'supportA'} ), 

left_ on='item _A', right_ index=True) 

.merge(item_stats.rename(columns={'freq': 'freqB', 'support': 'supportB'} ), 

left_ on='item _ B ', right_ index=True)) 

# Returns name associated with item 

def merge _item_ name(rules, item_ name): 
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columns= ['itemA','itemB','freqAB','supportAB','freqA','supportA','freqB','supportB', 

'confidenceAtoB','confidenceBtoA','lift'] 

rules = (rules 

.merge(item _ name.rename( columns= {'item_ name': 'itemA'} ), 

left_ on='item _ A', right_ on='item _id') 

.merge(item _ name.rename( columns= {'item_ name': 'itemB'} ), 

left_on='item _ B', right_on='item _id')) 

return rules[ columns] 

def association_ rules( order _item, min _support): 

# Calculate item frequency and support 

item stats = freq( order _item). to_ frame("freq") 

item_stats['support'] = item_stats['freq'] I order_count(order_item) * 100 

# Filter from order_item items below min support 

qualifying_items = item_stats[item_stats['support'] >= min_support].index 

order item = order_ item[ order_ item.isin( qualifying_ items)] 
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# Filter from order item orders with less than 2 items 

order size = freq(order_item.index) 

qualifying_ orders = order_ size [order_ size >= 2]. index 

order item = order_ item[ order_ item.index.isin( qualifying_ orders)] 

# Recalculate item frequency and support 

item stats = freq(order _item).to_ frame("freq") 

item_stats['support'] = item_stats['freq'] I order_count(order_item) * 100 

# Get item pairs generator 

item _pair _gen = get_item _pairs( order _item) 

# Calculate item pair frequency and support 

item_pairs = freq(item _pair _gen).to _frame("freqAB") 

item _pairs['supportAB'] = item _pairs['freqAB'] I len( qualifying_ orders) * 100 

# Filter from item _pairs those below min support 

item_pairs = item_pairs[item_pairs['supportAB'] >= min_support] 
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# Create table of association rules and compute relevant metrics 

item _pairs= item _pairs.reset_index().rename( columns={'level_ O': 'item_ A', 'level_ I': 

'item_B'}) 

item _pairs = merge _item_ stats(item _pairs, item_ stats) 

item _pairs['confidenceAtoB'] = item _pairs['supportAB'] I item _pairs['supportA'] 

item _pairs['confidenceBtoA'] = item _pairs['supportAB'] I item _pairs['supportB'] 

item _pairs['lift'] 

item _pairs['supportB']) 

= item _pairs['supportAB'] I (item _pairs['supportA'] * 

# Return association rules sorted by lift in descending order 

return item _pairs.sort_ values('lift', ascending=False) 

rules= association rules(orders, 0.01) 

display(rules) 
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#Script to execute PMRA Code 

echo -e "Starting Example for testOl \n" 

echo -e "Removing old output directories \n" 

hadoop fs -rm -r testOl-streaming 

hadoop fs -rm -r testOl 

echo -e "\nCreating input directory and copying input data\n" 

hadoop fs -mkdir testOl 

hadoop fs -copyFromLocal order _products_train.csv testO 1 

echo -e "\nRunning Map Reduce\n" 

## Streaming command 

hadoop jar /usr/lib/hadoop-0 .20-mapreduce/ contrib/ streaming/hadoop-streaming-2. 6. O­ 

mr 1-cdh5 .13. 0 .jar\ 

-input dataset \ 

-output result-streaming \ 

-mapper mapper.py \ 

-combiner org.apache.hadoop.mapred.lib.IdentityReducer \ 

-reducer org.apache.hadoop.mapred.lib.IdentityReducer \ 

-jobconf stream.num.map.output.key.fields=2 \ 

-jobconf stream.num.reduce.output.key.fields=2 \ 

-jobconf mapred.reduce. tasks= 1 \ 
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-file mapper.py 

echo -e "\nMapReduce completed. Printing output\n" 

hadoop fs -cat result-streaming/* 

echo -e "\nExample completed." 
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Appendix C 

The merge and comparison operation 

The merge and comparison code was implemented using python programming language 

in Anaconda Jupyter Notebook environment, which allow us to execute the code 

systematically to view the results of this certain part of code. 

A. The compare operation code. 

1. Declare and import the python language libraries which necessary to the 

companson operation. Reading the result file from the Traditional Apriori 

algorithm implementation to DataFrame variable and print to the screen the first 

five lines in the file. 

In [2]: %matplotlib inline 
import matplotlib. pyplot as plt 
import pandas as pd 

data • pd. read_csv( 'result .csv', sep•'; ', index_col•None) 
#data=data. head(1BB) 
data.head(5) 

Out[2]: 
itemA itemB freqAB supportAB freqA supportA freqB supportB confidenceAtoB confidenceBtoA lift 

Organic Strawberry Chia Organic Cottage Cheese 
Lowfat 2% Cottage Cheese Blueberry Acai Chia 

Grain Free Chieken Formula Grain Free Turkey Fonnula 
Cat Food Cat Food 

306 0.010155 1163 0.038595 839 0.027843 0.263113 0.364720 9.449868 

318 0.010553 1809 0.060033 879 0.029170 0.175788 0.361775 6.026229 

Organic Fruit Yogurt 
Smoothie Mixed Berry 

Apple Blueberry Fruit 
Yogurt Smoothie 349 0.011582 1518 0.050376 1249 0.041449 0.229908 0.279424 5.546732 

Nonfat Strawberry With Fruit 0% Greek, Blueberry on the 
On The Bottom Gre... Bottom Yogurt 409 0.013573 1666 0.055288 1391 0.046162 0.245498 0.294033 5.318230 

10 Organic Grapefruit Ginger 
Sparkling Verba Mate 

Cranberry Pomegranate 
Sparkling Verba Mate 351 0.011648 1731 0.057445 1149 0.038131 0.202773 0.305483 5.317849 

2. Count how many lines Traditional Apriori algorithm result file contain which 

mean the amount of the frequent item set it contain. 

In [4]: len(data.index) 

Out[ 4]: 48751 
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3. Reading the first result file from the PMRA implemented on first partition to 

DataFrame variable and print to the screen the first five lines in the file. 

In [6]: result000 = pd. read_csv(' result_000. c sv", sep='; ', index_col=None) 
#resul tBOO=resul tBOO. head(lBB) 
resul t000. head(S) 

Out[6]: 
Unnamed: Item A ftemB freqAB supportAB freqA supportA freqB supportB confidenceAtoB confidenceBtoA lift 0 

Organic Raspberry Organic Wildberry 31 0.010102 109 0.035521 112 0.036498 0.284404 0.276786 7.792254 Yogurt Yogurt 

Organic Grapefruit 
Cranberry Pomegranate 1 Ginger Spat1ding Verba 45 0.014664 177 0.057680 118 0.038454 0.254237 0.381356 6.611548 

Mate Spat1ding Verba Mate 

Verba Mate Sparkling Cranberry Pomegranate 36 0.011732 142 0.046275 118 0.038454 0.253521 0.305085 6.592924 Classic Gold Spal1dfng Verba Mate 

Baby Food Pouch - Baby Food Pouch - 
Roasted Carrot Spinach Pumpkin & 37 0.012057 182 0.059310 97 0.031610 0.203297 0.381443 6.431386 

Spinach & Beans Chickpea 

Baby Food Pouch - Baby Food Pouch - 
Roasted Canot Butternut Squash, 51 0.016620 182 0.059310 147 0.047904 0.280220 0.346939 5.849617 

Spinach & Beans Carrot& C ... 

4. Count how many lines PMRA implemented on first partition result file contain 

which mean the amount of the frequent item set it contain. 

In [7]: len(result000.index) 

Out[7]: 50172 

5. Remove the frequent items that have lift smaller than one (lift < 1) from the 

Traditional Apriori algorithm result file and print to the screen the first five lines 

in the file. 

In data mining and association rule learning, lift is a measure of the performance of a targeting 
model 

lifi = 1 implies no relationship between A and B. (ie: A and B occur together only by chance) 
lifi > 1 implies that there is a positive relationship between A and B. (ie: A and B occur together more onen than random) 
lifi < 1 implies that there is a negative relationship between A and B. (ie: A and B occur together less onen than random) 

The value of lifi is that it considers both the confidence of the rule and the overall data set. 

In [8]: # Remove all the items that have lift less than 1 form the main result file 
data= data.drop(data[data.lift < 1].index) 
data.head(S) 

Out[8]: 
item A itemB freqAB supportAB freqA supportA freqB supportB confidenceAtoB confidenceBtoA lift 

Organic Stravv"berry Chia Organic Cottage Cheese 
Lowfat 2% Cottage Cheese Btuebeny Acai Chia 

Grain Free Chicken Formula Grain Free Turkey Formula 
Cat Food Cat Food 

306 0.010155 1163 0.038595 839 0.027843 0.263113 0.364720 9.449868 

318 0.010553 1809 0.060033 879 0.029170 0.175788 0.361775 6.026229 

Organic Fruit Yogurt Apple Blueberry Fruit 
Smoothie Mixed Berry Yogurt Smoothie 

Nonfat Strawbeny With Fruit 0% Greek, Bluebeny on the 
On The Bottom Gre... Bottom Yogurt 

349 0.011582 1518 0.050376 1249 0.041449 0.229908 0.279424 5.546732 

409 0.013573 1666 0.055288 1391 0.046162 0.245498 0.294033 5.318230 

10 Organic Grapefruit Ginger 
Sparkling Verba Mate 

Cranberry Pomegranate 
Sparkling Verba Mate 

351 0.011648 1731 0.057445 1149 0.038131 0.202773 0.305483 5.317849 
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6. Remove the frequent items that have lift smaller than one (lift< 1) from the PMRA 

implemented on first partition result file and print to the screen the first five lines 

in the file. 

In [9]: # Remove all the items that have lift less than 1 form the first sub result 
result000 = result000.drop(result000[result000.lift < 1].index) 
result000.head(5) 

Out[9]: 
Unnamed: item A itemB freqAB supportAB freQA supportA freqB supports confidenceAtoB confidenceBtoA lift 0 

Organic Raspberry Organic Wildberry 31 0.010102 109 0.035521 112 0.036498 0.284404 0.276786 7.792254 Yogurt Yogurt 

Organic Grapefruit Cranberry Pomegranate 1 Ginger Sparkling Verba 45 0.014664 177 0.057680 118 0.038454 0.254237 0.381356 6.611548 
Mate Sparkling Verba Mate 

Verba Mate Spar1ding Cranberry Pomegranate 36 0.011732 142 0.046275 118 0.038454 0.253521 0.305085 6.592924 Classic Gold Sparkling Verba Mate 

Baby Food Pouch - Baby Food Pouch - 
Roasted Carrot Spinach Pumpkin & 37 0.012057 182 0.059310 97 0.031610 0.203297 0.381443 6.431386 

Spinach & Beans Chickpea 

Baby Food Pouch· Baby Food Pouch • 
Roasted Carrot Butternut Squash, 51 0.016620 182 0.059310 147 0.047904 0.280220 0.346939 5.849617 

Spinach & Beans Carrot & C ... 

7. Compare the main result file and the first PMRA result file and find the 

compatibility between them. 

In [10]: # Compare between the main result file and the first sub result file Find 
# the combtiblity between the main result file and the first sub result file 
datalenth •• len(data.index) 
resul t000lenth •• len ( resul t000. index) 
C = 0 
for i in r-angej a.datatenth}: 

for j in range (01 result000Lenth): 
if ((data. Iocj L, 'itemA ·] •••• result000. loc[j, · itemA ·]) and (data. loc[i, ·items·] •••• result000. loc[j, · itemB "l) 

and (data.loc[i, 'lift'] > 1 and r-esul teea.Locj j , 'lift'])> 1): 
C •• C + 1 
#print(data. loc[i, 'itemA 'J, · -- \ data. loc[i, 'itemB 'J, · \n ·) 
#print(resultOOB. loc[j, 'itemA 'J, ' -- ', resultOOB. loc[j, 'itemB '], '\n ') 

print( 'The identical rows = ',c) 

The identical rows = 173 

8. Calculate the average of compatibility between the Traditional Apriori algorithm 

result file and identical rows in PMRA implemented on first partition result file. 

In [11]: # Calculate the average of compatibality between the the main result file and identical rows in sub result file 
averageToReasult •• (c/208)•100 
averageToReasul t 

Out[11]: 83.17307692307693 
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9. Count the length of the PMRA implemented on first partition result file after 

removing the lift below 1, which means count the number of frequent items in this 

file. 

In [14]: result000Lenth 

Out[14): 227 

10. Calculate the average of incompatibility between the Traditional Apriori 

algorithm result file and identical rows in PMRA implemented on first partition 

result file. 

In [12]: # Calculate the average of compatibal ity between the the sub result file and identical rows in sub result file 
averageToReasult000 = (c/227)•100 
averageToReasul t000 

Out[12): 76. 2114537444934 

B. The merge and compare operation code. 

The only different between this operation and the operation that we need 

to merge the result files from PMRA implementation one by one before 

comparing with the Traditional Apriori algorithm result file. 

1. Repeat the first and second steps in section A and then reading the first result file 

from the PMRA implemented on second partition to DataFrame variable and print 

to the screen the first five lines in the file. 

In [3): #read second result file and Load it to datafrome 
result001 = pd.read_csv('result_001.csv' ~ sep-.": '~ index_col=None) 
sresut.teee-resut: tBOO. head(188) 
resul t001. head ( 5) 

Out[3): 
Unnamed: itemA itemB freqAB supportAB freqA supportA freqB supportB confidenceAtoB confidenceBtoA lift 0 

Organic Strawberry Organic Cottage 
Chia Lowfat 2% Cheese Blueberry Acai 37 0.012063 128 0.041732 87 0.028365 0.289062 0.425287 10 190982 
Cottage Cheese Chia 

Yogurt, Sheep Milk, Yogurt. Sheep Milk, 31 0.010107 110 0.035863 106 0.034559 0.281818 0.292453 8.154675 Strawberry Blackberry 

Nonfat Strawberry Wrth 0% Greek, Blueberry Fruit On The Bottom 45 0.014671 168 0.054773 130 0.042384 0.267857 0.346154 6.319801 
Gre ... on the Bottom Yogurt 

strawberry and Peter Rabbit Organics 
Banana Fruit Puree Mango, Banana and 34 0.011085 229 0.074661 73 0.023800 0.148472 0.465753 6.238269 

Orange ... 

Organic Fruit Yogurt Apple Blueberry Fruit 32 0.010433 127 0.041406 131 0.042710 0.251969 0.244275 5.899544 Smoothie Mixed Berry Yogurt Smoothie 
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2. Count how many lines PMRA implemented on second partition result file contain 

which means the amount of the frequent item set it contain. 

In [ 4]: #Len th of the second dataframe 
len(result001) 

Out[4]: 50397 

3. Merge the two result files from the PMRA implementation by merge the two 

DataFrames belong to them. 

In [S]: #merge the first and socend result file 
mergeResult = pd. concat( [ result000, result001]) 
mergeResult. head( 5) 

Out[S]: 
Unnamed: 

0 itemA itemB treqAB supportAB freqA supportA freqB supportB confidenceAtoB confidenceBtoA lift 

Organic Raspberry Organic Wildberry 31 0.010102 109 0.035521 112 0.036498 0.284404 0.276786 7. 792254 Yogurt Yogurt 

Organic Grapefruit Cranberry Pomegranate 1 Ginger Sparkling Yertla 45 0.014664 1n 0.057680 118 0.038454 0.254237 0.381356 6.611548 
Mate Sparkling Verba Mate 

Verba Mate Sparkling Cranberry Pomegranate 36 0.011732 142 0.046275 118 0.038454 0.253521 0.305085 6.592924 Classic Gold Sparkling Verba Mate 

Baby Food Pouch - Baby Food Pouch - 
Roasted Carrot Spinach Pumpkin & 37 0.012057 182 0.059310 97 0.031610 0.203297 0.381443 6.431386 

Spinach & Beans Chickpea 

Baby Food Pouch - Baby Food Pouch - 
Roasted Carrot Butternut Squash, 51 0.016620 182 0.059310 147 0.047904 0.280220 0.346939 5.849617 

Spinach & Beans Carrot&C ... 

4. After merge, the result files to one DataFrame, we notes that the new merged 

DataFrame have duplicated indexes. 

In [ 6] : # after merge the result files to one dateframe we notes that the 
# new merged dataframe have dupl icatied indexes 

In [7]: mergeResult.loc[0, 'itemA'] 

Out[7]: 0 Organic Raspberry Yogurt 
0 Organic Strawberry Chia Lowfat 2% Cottage Cheese 
Name: itemA, dtype: object 
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5. Sort the merged DataFrame by higher lift. 

In [8]: # Sorting the merge dataframe by higher lift 

In [9]: SortedMergeResult •• mergeResult. sort_values(by •• [ 'lift'], ascending=False) 
SortedMergeResul t. head ( 5) 

Out(9]: 
Unnamed: 

0 ttemA itemB freqAB supportAB freqA supportA freqB support.B confidenceAtoB confidenceBtoA lift 

Organic Strawberry Organic Cottage 
Chia Lowfat 2% Cheese Blueberry Acai 37 0.012063 128 0.041732 87 0.028365 
Cottage Cheese Chia 

Yogurt, Sheep Milk, Yogurt, Sheep Milk, 31 0.010107 110 0.035863 106 0.034559 Strawberry Blackberry 

Organic Raspberry Organic Wildberry 31 0.010102 109 0.035521 112 0.036498 Yogurt Yogurt 

Organic Grapefruit Cranberry 
1 Ginger Sparkling Verba Pomegranate 45 0.014664 177 0.057680 118 0.038454 

Mate Sparkling Verba Mate 

Verba Mate Sparkling Cranberry 
Classic Gold Pomegranate 36 0.011732 142 0.046275 118 0.038454 

Sparkling Verba Mate 

0.289062 0.425287 10.190982 

0.281818 0.292453 8.154675 

0.284404 0.276786 7.792254 

0.254237 0.381356 6.611548 

0.253521 0.305085 6.592924 

In [10]: # Still have the same problem in duplicated idexes 

In [11]: SortedMergeResult. loc [0, 'itenA'] 

Out[11]: 0 Organic Strawberry Chia Lowfat 2% Cottage Cheese 
Organic Raspberry Yogurt 

Name: itemA, dtype: object 

6. Re-index the sorted merged DataFrame to solve the duplicated indexes. 

In [12]: # Reindex the sorted merged dataframe 

In [13]: SortedMergeResult. index = pd. Rangelndex(len(SortedMergeResult. index)) 

SortedMergeResult. index = range(len(SortedMergeResult. index)) 

In [14]: SortedMergeResult. head(S) 

Out(14]: 
Unnamed: 

0 itemA itemB freqAB support.AB freqA support.A freqB supportB confidenceAtoB confidenceBtoA lift 

Organic Strawbeny Organic Cottage 
Chia Lowfat 2% Cheese Bluebeny Acai 37 0.012063 128 0.041732 87 0.028365 0.289062 0.425287 ~ 
Cottage Cheese Chia 

Yogurt, Sheep Milk, Yogurt, Sheep Milk, 31 0.010107 110 0.035863 106 0.034559 0.281818 0.292453 8.154675 Strawbeny Blackbeny 

Organic Raspbeny Organic Wildbeny 31 0.010102 109 0.035521 112 0.036498 0.284404 0.276786 7.792254 Yogurt Yogurt 

Organic Grapefruit Cranbeny 
1 Ginger Sparkling Verba Pomegranate 45 0.014664 177 0.057680 118 0.038454 0.254237 0.381356 6.611548 

Mate Sparkling Verba Mate 

Verba Mate Sparkling Cranbeny 
Classic Gold Pomegranate 36 0.011732 142 0.046275 118 0.038454 0.253521 0.305085 6.592924 

Sparkling Verba Mate 

7. Count how many lines PMRA implemented on first and second partition result 

file contain which mean the amount of the frequent item set contained in the 

merged DataFrame. 

In [15]: # Lenth of the sorted merged dataframe after reindexing 
len(SortedMergeResul t) 

Out[15]: 100569 
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8. After merging there are duplicated rows depending in the itemA and itemB 

columns and keep the first frequent two items and drop the other because after 

sorting the first will be the higher so we will keep the higher lift value. 

In (18]: # Now we search for duplcated rows depending in the itemA and itemB columns and keep 
# the first and drop the other because after sorting the first will be the higer 
# so 11>'€ will keep the higher lift value 
dropOuplicteRow s SortedMergeResult. drop_duplicates( ( · itemA ·, · itemB "l • keep» ' first·, inplace•False) 
dropOuplicteRow. head(S) 

Out[18]: 
Unnamed: itemA itemB freqAB supportAB freqA supportA freqB supportB confidenceAtoB confidenceBtoA lift 0 

Organic Strawberry Organic Cottage 
Chia Lowfat 2% Cheese Blueberry Acai 37 0.012063 128 0.041732 87 0.028365 0.289062 0.425287 10.190982 
Cottage Cheese Chia 

Yogurt, Sheep Milk, Yogurt, Sheep Milk, 31 0.010107 110 0.035863 106 0.034559 0.281818 0.292453 8.154675 Strawberry Blackberry 

Organic Raspbeny Organic Wildbeny 31 0.010102 109 0.035521 112 0.036498 0.284404 0.276786 7.792254 Yogurt Yogurt 

Organic Grapefruit Cranberry 
1 Ginger Sparkling Verna Pomegranate 45 0.014664 177 0.057680 118 0.038454 0.254237 0.381356 6.611548 

Mate Sparkling Verba Mate 

Verba Mate Sparkling Cranbeny 
Classic Gold Pomegranate 36 0.011732 142 0.046275 118 0.038454 0.253521 0.305085 6.592924 

Sparkling Verba Mate 

9. Count how many frequent items in the merged DataFrame. 

In (19]: # Lenth of the new dataframe after dropping the duplicated rows 
len ( dropOuplicteRow) 

Out[19]: 57391 

Now the merge operation for the first and second partitions from the PMRA 

implementation completed and it is ready to be compare with Traditional Apriori 

algorithm result file by repeating the same operations from section A. Repeat the same 

procedures for the rest PMRA results files. 
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Appendix D 

The dataset splitter 

This code in python language represent the dataset splitter. It is very simple, and designed 

to read a CSV file and load it to a variable. Then using/or loop to read the data line by 

line. When the lines reach a specific number, which here in our case is (3300000) it creates 

a new file, gives it the same name of the original dataset file, and add a number for this 

file. Next, the loop starts again from the line coming after the last line in the first split file 

with repeating the same steps before. 

import sys 

fil=sys.argv[ 1] 

csvfilename = open(fil, 'r').readlines() 

file= 1 

for j in range(len(csvfilename)): 

if j % 33000000 == 0: 

open(str(fil)+ str(file) + '.csv', 'w+').writelines(csvfilenameu:j+33000000]) 

file+= 1 
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