
Journal of Academic Research                            Issue 13                                                      January2019        

 9201يناير   عشرثالث العدد ال  مجلة البحوث الأكاديمية

15 
 

THE BUBBLE ALGEBRAS AT ROOTS OF UNITY 

Mufida M. Hmaida 

Department of Mathematics, Misurata University, Misurata, Libya 
mu.hmaida@sci.misuratau.edu.ly 

 

 ABSTRACT 

We introduce multi-colour partition algebras ℙ𝑛,𝑚, then define the bubble algebra 𝕋𝑛,𝑚 as a sub-algebra 

of ℙ𝑛,𝑚. We present general techniques to determine the structure of the bubble algebra over the complex 

field in the non-semisimple case. 
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1. INTRODUCTION 
 

      In 2003, Grimm and Martin[2] introduced a new construction, called the bubble algebra, this 

algebra defined entirely diagrammatically.  They investigated its generic representations and 

proved that it is semi-simple when none of the parameters δi is a root of unity. Later,  Jegan[3] 

showed that the bubble algebra is a cellular algebra in the sense of Graham and Lehrer[1], and 

that it is a tower of recollement when all of the δi are non-zero, as it is defined in [5]. The notion 

of a cellular algebra was first introduced by Graham and Lehrer[1].  Also Jegan[3] showed how 

certain idempotent sub-algebra of the bubble algebra corresponded to tensor products of the 

Temperley-Lieb algebras and investigated the homomorphisms between the cell modules of the 

algebra 𝕋n,m(δ0, … , δm−1). 

     In this paper, we used a technique consist of reducing problems in the bubble algebra to 

problems in the Temperley-Lieb algebra. The representation theory of the Temperley-Lieb 

algebra is well known, see Martin [4] and Ridout and Saint [6].  All the algebras in this paper 

are over the complex field and all the modules are left modules.  

      The main results of the paper are Theorems 7.2 and 7.3, which determine radical series of 

cell modules for the bubble algebra 𝕋𝑛,𝑚(𝛿0, … , 𝛿𝑚−1) over the complex field and for all the 

tuples (𝛿0, … , 𝛿𝑚−1) in cases  𝑚 = 2  or  𝑚 > 2 . 

 

2. PRELIMINARIES 
 

     For  𝑛 ∈  ℕ, the symbol 𝒫𝑛 denotes the set of all partitions of the set 𝑛 ∪ 𝑛′, where 𝑛 =

{1,… , 𝑛} and 𝑛′ = {1′, … , 𝑛′}. Each individual set partition can be represented by a graph, the 

graph is drawn in a rectangle with n nodes on the top row represent the elements in the set 𝑛 and 

with n nodes on the bottom row of the rectangular represent the elements in the set 𝑛′, and the 

elements that in the same part at a partition, are represented as lines drawn connected their 

nodes inside the rectangular. Any diagrams are regarded as the same diagram if they 

representing the same partition. 

    Now the composition β ∘ α in 𝒫n  , where 𝛼, 𝛽 ∈ 𝒫𝑛   is the partition obtained by placing α 

above β, identifying the bottom vertices of α with the top vertices of  β  ,and ignoring any 

connected components that are isolated from boundaries. This product on 𝒫𝑛 is associative and 
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well-defined up to equivalence. A (𝑛1, 𝑛2)-partition diagram for any 𝑛1, 𝑛2 ∈  ℕ
+ is a diagram 

representing a set partition of the set 𝑛1 ∪ 𝑛2′, in the obvious way. We can generalize the 

product on 𝒫𝑛  to define a product of (𝑛,𝑚)-partition diagrams when it is defined: let α be 

(𝑛1, 𝑛2)-diagram and β be (𝑚1,𝑚2)-diagram, β ∘ α is defined if and only if  𝑛2 = 𝑚1 and it is 

(𝑛1,𝑚2)-diagram.  

  The diagrams representing partitions that spanning the Temperley-Lieb algebra TL𝑛(δ) over 

(say) the complex field are planar (non-crossing) and their parts all have size two. 

    We next briefly describe  the cell modules of TL𝑛(𝛿) , which will be used in this paper. A 

diagram representing a partition in TL𝑛(𝛿) can be cut to construct a half-diagram such that all 

arcs on the top edge are above the cut, all arcs on the bottom edge are below the cut and each 

propagating line is only cut once. A half-diagram has 𝑝 arcs called an (𝑛, 𝑝)-link state. For 

example, the following half-diagram  is a  (7,3)-link state. 

 
     As the number of propagating lines cannot increase by the multiplication, we can define  left 

TLn-modules 𝑀𝑛,𝑝 which are spanned by (𝑛, 𝑝′)-link states with 𝑝′ ≥ 𝑝 with action defined by 

putting the TL𝑛(𝛿)  -diagram above the half-diagram then proceeds as with TL𝑛(𝛿)  

multiplication, and finally omit any new bottom arcs. Note that 𝑀𝑛,[𝑛 2⁄ ] ⊂ ⋯ ⊂ 𝑀𝑛,1 ⊂ 𝑀𝑛,0. 

      The Temperley-Lieb algebra is a cellular algebra, with  the involution sending each diagram 

to its reflection in the horizontal plane, indexing set { 0, 1, …  , [𝑛 /2 ]}  and cell modules 

𝑽𝑛,𝑝 ≔ 𝑀𝑛,𝑝/𝑀𝑛,𝑝+1, see  [1]. The dimension of  𝑽𝒏,𝒑 is  (
𝑛
𝑝) − (

𝑛
𝑝 − 1) ≔ 𝒅𝑛,𝑝. 

      On each module 𝑽𝑛,𝑝 , there is a bilinear form < , >𝑛,𝑝,𝛿 defined as follows: if  𝑥  and 𝑦 are 

two (𝑛, 𝑝)-link states, the scalar < 𝑥, 𝑦 >𝑛,𝑝,𝛿 is computed by reflecting 𝑥  in a horizontal axis 

and identifying its vertical border with that of 𝑦. The value < 𝑥, 𝑦 >𝑛,𝑝,𝛿 is then non-zero only 

if every defect(an unconnected node) of  𝑥 ends up being connected to one of 𝑦, and in this case 

< 𝑥, 𝑦 >𝑛,𝑝,𝛿= 𝛿
𝑙 where 𝑙 is the number of closed loops which is obtained from connecting 𝑥 

and 𝑦. For more details see section 9.5.2 in [4]. 

     The matrix 𝑮𝑛,𝑝,𝛿 is defined to be the Gram matrix for the module 𝑽𝑛,𝑝 that represent the 

form < , >𝑛,𝑝,𝛿 with respect to a basis that contains all (𝑛, 𝑝)-link states.  

     Let 𝑀 be a module whose a bilinear form < , >. The radical of this form on 𝑀 is the set  

{ 𝑥 ∈  𝑀 ∣   〈 𝑥 , 𝑦 〉  = 0 for all 𝑦 ∈   𝑀 }. Define 𝑹𝑛,𝑝,𝛿  to be the radical of the previous bilinear 

form on the module 𝑽𝑛,𝑝 As we work over a field, the radical 𝑹𝑛,𝑝,𝛿 is a  sub-module of  𝑽𝑛,𝑝. If 

𝛿 ≠  0, then 𝑽𝑛,𝑝 is cyclic and indecomposable. Moreover,  𝑳𝑛,𝑝,𝛿 ≔ 𝑽𝑛,𝑝  /𝑹𝑛,𝑝,𝛿 irreducible. 

The cell modules  𝑽𝑛,𝑝 of the algebra TL𝑛(𝛿)  are irreducible except for particular values of the 

scalar 𝛿. Throughout this paper, let 𝛿 =  𝑞 + 𝑞−1 with 𝑞 ∈  ℂ. 

Proposition 2.1. [4,Section 6.4, Theorem 1]. If  𝑞 is not a root of unity, then the algebra TL𝑛(𝛿)  

is semi-simple, and the modules 𝑽𝑛,𝑝  , where 0 ≤ 𝑝 ≤ [𝑛/2], form a complete set of non-

isomorphic irreducible modules of the algebra TL𝑛(𝛿). 

    Let 𝑞 be a root of unity and let 𝒍 be the minimal positive integer satisfying  𝑞2𝒍 = 1. The 

module 𝑽𝑛,𝑝  (or the pair (𝑛, 𝑝)) is called critical if 𝑞2(𝑛−2𝑝+1) = 1. 

Theorem 2.2. [4,Sec. 7.3, Theorem 2]. If  0 ≤  𝑝1 − 𝑝2 <  𝑙  and  𝑛 − 𝑝1 − 𝑝2 + 1 0 (mod 𝒍), 

then there is a non-trivial homomorphism 𝜃: 𝑽𝑛,𝑝2 → 𝑽𝑛,𝑝1 . Furthermore, the kernels and co-
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kernels of the homomorphism θ  are irreducible. Otherwise, there is no non-trivial 

homomorphism from 𝑽𝑛,𝑝2 to 𝑽𝑛,𝑝1. 

     Define 𝑟(𝑛,𝑝)  be the integer satisfying the equation 𝑛 − 2 𝑝 + 1 =  𝑘 𝒍 +  𝑟(𝑛,𝑝)  , where 

k ∈  ℕ and  𝑟(𝑛,𝑝) ∈ {1,… , 𝒍}. The critically of  (𝑛, 𝑝)  is equivalent to 𝑟(𝑛,𝑝) = 𝒍. 

Proposition 2.3.[4,Section 7.3, Theorem 2]. Let 𝑞 be a root of unity and (𝑛, 𝑝)  be non-critical. 

Then  

dim𝑹𝑛,𝑝,𝛿 = {
dim𝑳𝑛,𝑝+𝑟(𝑛,𝑝)−𝑙,δ 𝑖𝑓 𝑝 + 𝑟(𝑛,𝑝) − 𝑙 ≥ 0,

0                                 otherwise.
        (1) 

3. THE BUBBLE ALGEBRA 𝕋𝐧,𝐦(𝛅𝟎, … , 𝛅𝐦−𝟏) 

     Throughout the paper, let n,m be positive integers, ℭ0, … , ℭ𝑚−1 be different colours where 

none of them is white, and 𝛿0, … , 𝛿𝑚−1 be scalars corresponding to these colours. 

     The aim of this section is introducing the multi-colour partition algebra and then defining the 

bubble algebra. We construct basis of the multi-colour partition algebra in similar way to the 

algebra ℙ𝑛( 𝛿).  

     Define Φ 
𝑛,𝑚 ≔ {(𝐴0, … , 𝐴𝑚−1)|{𝐴0, … , 𝐴𝑚−1} ∈ 𝒫𝑛}. Let (𝐴0, … , 𝐴𝑚−1) ∈ Φ 

𝑛,𝑚, define 

𝒫𝐴0,…,𝐴𝑚−1 to be the set ∏𝑖=0
𝑚−1𝒫𝐴𝑖, where 𝒫𝐴𝑖 is the set of all set partitions of the set  𝐴𝑖, and the 

set 𝒫𝑛,𝑚 to be the union of sets 𝒫𝐴0,…,𝐴𝑚−1 where (𝐴0, … , 𝐴𝑚−1) ∈ Φ 
𝑛,𝑚.     

    The element 𝑑 = (𝑑0, … , 𝑑𝑚−1) ∈ ∏𝑖=0
𝑚−1𝒫𝐴𝑖  is represented by the same diagram as the 

partition ∪𝑖=0
𝑚−1 𝑑𝑖 ∈ 𝒫𝑛 after colouring it as follows. We use the colour ℭ𝑖 to draw all the edges 

and the nodes in the partition 𝑑𝑖. A diagram represents an element in 𝒫𝑛,𝑚 is not unique. We say 

two diagrams are equivalent if they represent the same tuple of partitions. The term multi-colour 

partition diagram will be used to mean an equivalence class of a given diagram. For example, 

the following diagrams in are equivalent. 

 

    We define the following sets for each element 𝑑 ∈ ∏𝑖=0
𝑚−1𝒫𝐴𝑖: 

𝑡𝑜𝑝(𝑑) = (𝐴0 ∩ 𝑛,… , 𝐴𝑚−1 ∩ 𝑛),      𝑏𝑜𝑡(𝑑) = (𝐴0 ∩ 𝑛′, … , 𝐴𝑚−1 ∩ 𝑛′). 

Definition 3.1. Let ℙ𝑛,𝑚(𝛿0, … , 𝛿𝑚−1) be ℂ-vector space with the basis 𝒫𝑛,𝑚 and with the 

composition: 

(𝛼𝑖)(𝛽𝑖) = {
∏𝛿𝑖

𝑐𝑖(𝛽𝑖 ∘ 𝛼𝑖)

𝑚−1

𝑖=0

if  bot(α) = top(β),

0 otherwise.

 

where 𝛿𝑖 ∈ ℂ, 𝛼, 𝛽 ∈ 𝒫𝑛,𝑚, 𝑐𝑖 is the number of removed connected components from the middle 

row when computing the product 𝛽𝑖  ∘ 𝛼𝑖  for each 𝑖 = 0,… ,𝑚 − 1  and ∘  is the normal 

composition of partition diagrams. 

Proposition 3.2. The previous product on ℙ𝑛,𝑚(𝛿0, … , 𝛿𝑚−1) is associative. 

Proof. It comes from the associativity of ∘ the normal composition of partition diagrams.                         

     From the previous proposition, we have  ℙ𝑛,𝑚(𝛿0, … , 𝛿𝑚−1) is an algebra with identity: 

1ℙ𝑛,𝑚 ∶= ∑ (1𝐴0 , … , 1𝐴𝑚−1 ),

(𝐴𝑖)∈𝛯
𝑛,𝑚
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where 𝛯𝑛,𝑚 ≔ {(𝐴0,… ,𝐴𝑚−1) ∣∪𝑖=0
𝑚−1 𝐴𝑖 = 𝑛,𝐴𝑖 ∩ 𝐴𝑗 = ∅ ∀ 𝑖 ≠ 𝑗}, 1𝐴𝑖 is the partition of the 

set 𝐴𝑖 ∪ 𝐴𝑖 ′ where any node 𝑗 is only connected with the node 𝑗′ for all 𝑗 ∈ 𝐴𝑖 and 𝐴𝑖
′ = {𝑗 ′|𝑗 ∈

𝐴𝑖}, for all 0 ≤  𝑖 ≤  𝑚 − 1. This means the identity is the summation of all the different multi-

colour partitions that their diagrams connect 𝑖  only to 𝑖′ with any colour for each 1 ≤  𝑖 ≤  𝑛. 

The algebra ℙ𝑛,𝑚(𝛿0, … , 𝛿𝑚−1) is called the multi-colour partition algebra. 

Definition 3.3. [2,Section 2]. The propagating number of 𝛼 ∈ 𝒫𝑛,𝑚, #(α) is the number of parts 

which contain nodes from both the top and the bottom rows in any colour, i.e. #(𝛼) =

∑ #(𝛼𝑖)
𝑚−1
𝑖=0  or simply #(𝛼) = #(⋃ 𝛼𝑖

𝑚−1
𝑖=0 ). 

Definition 3.4. [2,Section 2]. The ℭi  -propagating number of 𝛼 ∈ 𝒫𝑛,𝑚 , #𝑖(𝛼) , is the 

propagating number of 𝛼𝑖. 

    The propagating number of diagrams in the algebra ℙ𝑛,𝑚 has similar property of propagating 

number of diagrams in ℙ𝑛(𝛿): if 𝛼, 𝛽 ∈ 𝒫𝑛,𝑚 with 𝛼 𝛽 ≠  0, then 

#(𝛼𝛽) ≤ 𝑚𝑖𝑛(#(𝛼), #(𝛽)),             #𝑖(𝛼𝛽) ≤ 𝑚𝑖𝑛(#𝑖(𝛼), #𝑖(𝛽)). 

    A planar multi-colour partition in 𝒫𝑛,𝑚 is a multi-colour partition whose a diagram that does 

not have edge crossings in the same colour. This is the same definition that Grimm and Martin 

use in [2] In other words, there can be crossed edges but they don't have the same colour. We 

define subsets of 𝒫𝑛,𝑚 corresponding to those subsets of  𝒫𝑛 as following: 

𝔖𝑛,𝑚 = {𝑑 ∈ 𝒫𝑛,𝑚 ∣∣ #(𝑑) = 𝑛 },                               

𝒜𝑛,𝑚 = {𝑑 ∈ 𝒫𝑛,𝑚 ∣∣ 𝑑 is planar },                            

ℬ𝑛,𝑚 = {𝑑 ∈ 𝒫𝑛,𝑚 ∣∣ all blocks of 𝑑 have size 2 },

𝒯𝑛,𝑚 = 𝒜𝑛,𝑚 ∩ ℬ𝑛,𝑚,                                                

�̂�𝑛,𝑚 = 𝒜𝑛,𝑚 ∩ 𝔖𝑛,𝑚.                                                 }
 
 

 
 

             (2) 

     The diagrams in the bubble algebra, as Grimm and Martin[2] defined them, in the case of 

two colours can be constructed by drawing two Kauffman diagrams (or just one) with no 

internal loops, using different colours in the same frame with n nodes on the northern face and n 

nodes on the southern face, such that if a node is contained in first Kauffman diagram, it will 

not be contained in the second. This means that at these diagrams the nodes are connected in 

pairs with different colours where an intersection is just allowed between different colour edges. 

    The bubble algebra 𝕋𝑛,𝑚(𝛿0, … , 𝛿𝑚−1) (it is denoted by 𝑇𝑛
2 ( 𝛿𝑟, 𝛿𝑏)  in [2] in the case of two 

colours), or simply 𝕋𝑛,𝑚 and 𝕋𝑛,𝑚(𝛿) for simplicity where 𝛿 = (𝛿0, … , 𝛿𝑚−1), is the ℂ-linear 

extension of the set of isotopy classes of previous diagrams and composition defined as the one 

on ℙ𝑛,𝑚(𝛿0, … , 𝛿𝑚−1) , with internal closed loop replacement. The loop replacement scalar  

here depends on the colour. The bubble algebra 𝕋𝑛,𝑚(𝛿0, … , 𝛿𝑚−1) is the sub-algebra of the 

algebra ℙ𝑛,𝑚 spanned by the set  𝒯𝑛,𝑚, which is defined in equation (2). 

 

4. CELL MODULES 
 

      Making an arc, an edge connects two nodes in the same row(top or bottom) of a diagram,  

needs two vertices on this row, so the propagating number of any diagram 𝑑 ∈ 𝒯𝑛,𝑚 has the 

form #(𝑑) = 𝑛 − 2𝑣  for some integer v, where 0 ≤  𝑣 ≤  [ 𝑛/2 ]. 

     Define the set 𝛤(𝑙,𝑚) ∶= { 𝜆 = (𝜆0, … , 𝜆𝑚−1 ) ∣   𝜆𝑖 ∈  ℕ ∪ { 0 } for each i and ∑ 𝜆𝑖 = 𝑙}
𝑚−1
𝑖=0  

and the set 𝛬 ∶=  ⋃ 𝛤(𝑛−2𝑣,𝑚).
[𝑛/2]
𝑣=0   
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    We follow Grimm and Martin [2] and define the subset  𝒯𝑛,𝑚[𝜆0, … , 𝜆𝑚−1], or simply  

𝒯𝑛,𝑚[𝜆] to be {𝑑 ∈ 𝒯𝑛,𝑚 ∣ #𝑗(𝑑) = 𝜆𝑗 ∀𝑗 ∈ ℤ𝑚}, where 𝜆 ∈ 𝛬. 

     A half-multi-colour diagram, or simply half-diagram, is a diagram obtained by cutting 

horizontally a diagram in the set 𝒯𝑛,𝑚 in the middle such that each propagating line is cut once, 

thus this is well defined on classes. As for the Temperley-Lieb algebra, we can form a  unique 

bubble algebra diagram from two half-diagrams providing that they have the same number of 

propagating lines of each colour.  Let 𝒯𝑛,𝑚
| 〉
[𝜆] be the set of top pieces obtained by cutting 

elements of the set 𝒯𝑛,𝑚[𝜆] where 𝜆 ∈ 𝛬. Similarly 𝒯𝑛,𝑚
〈 |
[𝜆] is the set of bottom pieces obtained 

by cutting elements of  𝒯𝑛,𝑚[𝜆]. 

     A half-diagram is called a ((𝑛0, 𝑝0),… , (𝑛𝑚−1 , 𝑝𝑚−1))-link state, if it contains both 𝑛𝑗 

nodes and 𝑝𝑗 arcs of the colour ℭ𝑗 for each 𝑗 . This means that there are 𝑛𝑗 − 2𝑝𝑗 unconnected 

nodes of the colour ℭ𝑗 for each 𝑗. 

     Denote by ℂ𝑴𝑛 ( 𝜆0, … , 𝜆𝑚−1), or simply ℂ𝑴𝑛 ( 𝜆) where 𝜆 ∈ 𝛬 the vector space with a 

basis 𝑴𝑛( 𝜆) which contains all link states that have number of defects of the colour ℭ𝑗 on the 

form 𝜆𝑗 − 2𝑡𝑗 for each  𝑗 ∈ ℤ𝑚 where 0 ≤  𝑡𝑗 ≤ [𝜆𝑗 /2 ]. 

Lemma 4.1. Let 𝜆 ∈ 𝛬 . The vector space ℂ𝑴𝑛( 𝜆)  is a left 𝕋𝑛,𝑚 - module with the action 

defined  by  the concatenation of diagram with a half-diagram then proceeding as we would 

with two diagrams in 𝕋𝑛,𝑚 (remove each loop and replace it by parameter corresponding to the 

loop's colour and it will be zero if they have different distribution of colours), and finally omit 

any new bottom arcs.   

Proof. Let 𝑥 ∈ 𝒯𝑛,𝑚  and d be a half-diagram in 𝑴𝑛( 𝜆) . Without loss of generality, we can 

assume 𝑥𝑑 ≠  0, multiplying 𝑥  with 𝑑  cannot create any additional propagating lines of any 

colour. Thus the number of ℭ𝑗-defects in  𝑥 𝑑  is of the form 𝜆𝑗 − 2𝑡𝑗 where 0 ≤  𝑡𝑗 ≤ [𝜆𝑗 /2 ], 

because making an extra ℭ𝑗-arc needs two ℭ𝑗-nodes.                                                        

     Define a subset  𝑴𝑛
<(𝜆) to be ⋃ 𝑴𝑛(𝜆0, … , 𝜆𝑗 − 2,… , 𝜆𝑚−1) 

𝑚−1
𝑗=0 . Note that 𝑴𝑛(𝜆0, … , 𝜆𝑗 −

2,… , 𝜆𝑚−1) is taken to be the empty-set when 𝜆𝑗  <  2. Let  ℂ𝑴𝑛
< ( 𝜆) be the module that 

generated by 𝑴𝑛
< ( 𝜆), thus ℂ𝑴𝑛

<(𝜆) is a sub-module of ℂ𝑴𝑛
 (𝜆). 

Lemma 4.2. Let 𝛥𝑛 ( 𝜆 ) be the module  ℂ𝑴𝑛
  ( 𝜆)/ℂ𝑴𝑛

< ( 𝜆) of the algebra 𝕋𝑛,𝑚, where 𝜆 ∈ 𝛬. 

Then the module 𝛥𝑛 ( 𝜆 )  has the set 𝒯𝑛,𝑚
| 〉
[𝜆] as a basis.                                                  

Theorem 4.3. [3, Proposition 1.3.2] The algebra 𝕋𝑛,𝑚(�̆�)  is cellular over any field, with  the 

involution sending each diagram to its reflection in the horizontal plane, and the indexing set 

Λ = ⋃ 𝛤(𝑛−2𝑣,𝑚) 
[𝑛/2]
𝑣=0 . The order on the set 𝛬 is defined by  

𝜆 ≥   𝜆′ f and only if 𝜆𝑗 ≤  𝜆𝑗
′   for each 𝑗. 

The modules 𝛥𝑛 ( 𝜆 )  where 𝜆 ∈ 𝛬  are cell modules of the algebra 𝕋𝑛,𝑚.  

    Each cell module 𝛥𝑛 ( 𝜆 ) comes with a contravariant inner product via its basis of top half-

diagrams, defined as follows: let 𝑑, 𝑑′ ∈ 𝒯𝑛,𝑚[𝜆], 𝑥 = 〈𝑑 ∣  and 𝑦 =∣ 𝑑′〉, so 

𝑑𝑑′ = |𝑑 〉 〈 𝑑 | |𝑑′〉 〈 𝑑′ |  =   〈 𝑑| | 𝑑′〉  |𝑑 〉 〈 𝑑′ |   = :  〈 𝑑| | 𝑑′〉 𝑑′′, 

so 〈 𝑥, 𝑦〉 = {
〈 𝑑 ||𝑑′〉 if 𝑑′′ ∈ 𝒯𝑛,𝑚[𝜆],

0          otherwise.
  

     Let 𝐺𝑛(𝜆 ) to be the Gram matrix of the previous inner product on the cell module 𝛥𝑛(𝜆 ) 

with respect to half-diagrams basis. Since we work over a field, we can check when the module 
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𝛥𝑛(𝜆 ) is simple by computing 𝑑𝑒𝑡 𝐺𝑛(𝜆 )  as long as 〈  , 〉 ≠  0. Grimm and Martin [2] showed 

that the cell modules  𝛥𝑛 ( 𝜆0, 𝜆1)   are generically simple. 

     Let Λ0 be subset of Λ that contains all λ ∈ Λ such that 〈   ,    〉 ≠  0 . Note that when 𝛿𝑗 ≠  0 

for some 𝑗, then Λ0 = Λ, since we can take a half diagram with all the arcs of the colours 

corresponding to non-zero scalars. Even if 𝛿𝑗 = 0 for all 𝑗, then for each cell module Δ𝑛 ( 𝜆 )  

with  ∑ 𝜆𝑗 ≠ 0
𝑚−1
𝑗=0 , the inner product 〈   ,    〉 ≠  0 because we can still find diagrams such their 

product is equal to one.  Thus Λ0 = Λ unless 𝑛 is an even integer and 𝛿𝑖 = 0 for each 𝑖 ∈ ℤ𝑚. 

In the case 𝑛 is an even integer and 𝛿𝑖 = 0 for each 𝑖 ∈ ℤ𝑚 , then Λ0 = Λ\{(0,… ,0)} . Then 

𝕋𝑛,𝑚(�̆�)   is a quasi-hereditary if and only if 𝛿𝑗 ≠  0 for some 𝑖 ∈ ℤ𝑚 or 𝑛 is an odd integer. 

5. IDEMPOTENT LOCALISATIONS 

    Let 𝜇 ∈ 𝛤(𝑛,𝑚), define 𝜇  ≔ ({1,… , 𝜇0}, {1 + 𝜇0, … , 𝜇0 + 𝜇1},… , {1 + ∑ 𝜇𝑗
𝑚−2
𝑗=0 , … , 𝑛}). 

Proposition 5.1. Let (𝐴𝑖) ∈ 𝛯
𝑛,𝑚 and #𝑗(1(𝐴𝑖)) = 𝜇𝑗 for each 𝑗, then the elements 1(𝐴𝑖) and 1𝜇 

are conjugate in the algebras 𝕋𝑛,𝑚 and  ℙ𝑛,𝑚. 

Proof. To show that we need to define an element 𝐷 ∈ 𝕋𝑛,𝑚  such that  𝐷−1 1(𝐴𝑖) 𝐷 =   1𝜇 . 

Claim that the element  

𝜃(𝐴𝑖) + ∑ 1𝐵
𝐵∈𝛯𝑛,𝑚/{(𝐴𝑖)}

 

satisfies the previous equation, where  𝜃(𝐴𝑖)  is the multi-colour partition obtained from 

colouring a permutation 𝜃 with top equals (𝐴𝑖), and θ is specific permutation changes the order 

of coloured lines without crossing lines that have the same colour. It is not hard to show that 

𝜃 ∈ 𝔖𝑛 and the inverse 𝐷−1 will be 

(𝜃−1)(𝐴𝑖)
 + ∑ 1𝐵

𝐵∈𝛯𝑛,𝑚/{𝜇}

, 

  where the diagram (𝜃−1)(𝐴𝑖)
  is the coloured image of  𝜃−1 with bottom equals (𝐴𝑖), is 

contained in 𝕋𝑛,𝑚 because by flipping the diagram (𝜃−1)(𝐴𝑖)
  we obtain 𝜃(𝐴𝑖).                

    Jegan[3] proved in Theorem 3.1.4, for any 𝜇 ∈ 𝛤(𝑛,𝑚)  the algebras ⨂𝑖=0
𝑚−1𝑇𝐿𝜇𝑖(𝛿𝑖)  and 

1𝜇𝕋𝑛,𝑚(𝛿)1𝜇   are isomorphic with a map sending any tuple of diagrams in ⨂𝑖=0
𝑚−1𝑇𝐿𝜇𝑖(𝛿𝑖) to 

the diagram in 1𝜇𝕋𝑛,𝑚(�̆�)1𝜇  formed by drawing these diagrams in one frame one by one using 

different  colours such that the diagram from TL𝜇𝑖(𝛿𝑖) is drawn in the colour ℭ𝑖. Similarly, if 

𝑽𝜇0,𝑝0 , … , 𝑽𝜇𝑚−1,𝑝𝑚−1  are cell modules for the algebras 𝑇𝐿𝜇0(𝛿0), … , 𝑇𝐿𝜇𝑚−1(𝛿𝑚−1) 

respectively, then elements of the module ⨂𝑖=0
𝑚−1𝑽𝜇𝑖,𝑝𝑖 can be represented by ((𝜇𝑖 , 𝑝𝑖)

 )𝑖∈ℤ𝑚-link 

states, by using the same map which it is the same isomorphism that Jegan used in the proof of 

the fact: let λ ∈ Λ and μ ∈ 𝛤(𝑛,𝑚), then  

1𝜇Δn(λ) ≅ {
⨂𝑗=0
𝑚−1𝑽𝜇𝑗,tj if 𝜇𝑗 − 𝜆𝑗 = 2𝑡𝑗 for each 𝑗 for some 𝑡𝑗 ∈ ℕ,

0            otherwise,                                                      
 

as 1𝜇𝕋𝑛,𝑚(�̆�)1𝜇-module. 

   Important convention:  whenever ⨂j=0
m−1Mj  is mentioned, where Mi  is a sub-module or 

quotient module of  𝐕𝜇𝑗,𝑡𝑗 we mean its image in 1𝜇𝛥𝑛(𝜆) under the previous isomorphism. 
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     A basis of 𝛥𝑛(𝜆)  is the set that contains all ((𝜆𝑖 + 2𝑝𝑖, 𝑝𝑖)
 )𝑖∈ℤ𝑚 -link states where 

𝑝0 , … , 𝑝𝑚−1 are non-negative integers such that ∑ 𝜆𝑖 + 2𝑝𝑖𝑖∈ℤ𝑚 = 𝑛, which is the same as the 

basis 𝒯𝑛,𝑚
| 〉
[𝜆]. Each ((𝑛𝑖, 𝑝𝑖)

 )𝑖∈ℤ𝑚-link state  determines a collection of (𝑛𝑖, 𝑝𝑖)-link states as 

they are defined in Section 2, where each 𝑖 represents the colour ℭ𝑖, by omitting all the parts 

that have colour not ℭ𝑖, thus 

Δn(λ) = ∑ ∑ 𝜎(⨂𝑖=0
𝑚−1𝑽𝜆𝑖+2𝑢𝑖,𝑢𝑖)

𝜎∈�̂�𝑛,𝑚𝑢∈𝛤(𝑣,𝑚)

, 

where 𝜆 ∈ 𝛤(𝑛−2𝑣,𝑚). For example, take 𝛼 to be the ((3,1),(2,0),(4,1))-link state , 

so α can be consider as a collection of the next link states:    

 
     Let 𝑎 =  | 𝐷 〉 ∈ 𝛥𝑛 ( 𝜆 ) for some D ∈ 𝒯𝑛,𝑚

 [𝜆]. The distribution of the colours of 𝑎 is the set 

top ( D). This set will be denoted by top ( 𝑎). Let 𝑎 be a ((𝜆𝑗 + 2𝑝𝑗 , 𝑝𝑗)
 
)
𝑗∈ℤ𝑚

-link state and 𝑏 

be a ((𝜆𝑗 + 2𝑝′𝑗, 𝑝′𝑗)
 
)
𝑗∈ℤ𝑚

link state where ∑𝑝𝑗 = ∑𝑝𝑗
′ . It is evident that 〈 𝑎, 𝑏 〉  = 0 unless 

𝑝𝑗 = 𝑝𝑗
′  for each 𝑗 and the distributions of the colours of  𝑎 and 𝑏 are same. When 𝑝𝑗 = 𝑝𝑗

′  for 

each j and top ( 𝑎) = top ( b), and 𝑎𝑗 be the (𝜆𝑗 + 2𝑝𝑗 , 𝑝𝑗)-link state which is obtained from 𝑎 

by omitting all the parts that have colour not ℭ𝑗. Similarly, we define 𝑏𝑗. From the graphical 

visualization of the product on the algebra 𝕋𝑛,𝑚, we obtain  

 〈 𝑎, 𝑏 〉 = 〈 𝑎0 , 𝑏0  〉𝑛0,𝑝0,𝛿0 × ⋯×  〈 𝑎𝑚−1 , 𝑏𝑚−1  〉𝑛𝑚−1,𝑝𝑚−1,𝛿𝑚−1  ,           (3) 

where 〈 𝑎𝑗 , 𝑏𝑗  〉𝑛𝑗,𝑝𝑗,𝛿𝑗  denotes the standard bilinear form on 𝑽𝜆𝑗+2𝑝𝑗,𝑝𝑗  as 𝑇𝐿𝑛𝑗(𝛿𝑗)-module. 

Note that distribution of colours, if it matches up, does not play any rule. In other words, if 

𝑎, 𝑏, 𝑐  and 𝑑  be ((𝑛𝑗, 𝑝𝑗)
 
)
𝑗∈ℤ𝑚

-link states such that 𝑎𝑗 = 𝑐𝑗  and 𝑏𝑗 = 𝑑𝑗 , then  〈 𝑎, 𝑏 〉  =

  〈 𝑐, 𝑑 〉 if top ( 𝑎) = top ( b) and top ( c) = top ( d) . Note that 𝑎  and c may have different 

distributions of colours. As consequence of this, we have the following theorem. 

Theorem 5.2. [3, Lemma 3.2.10]. If 𝜆 ∈ 𝛤(𝑛−2𝑣,𝑚) for some 𝑣, then the Gram matrix of the cell 

module 𝛥𝑛 ( 𝜆 )  of the previous inner product with respect to half-diagrams basis can be written 

in the form 

𝐺𝑛(𝜆) = ⨁𝑢∈𝛤(𝑣,𝑚)⨁
𝑛𝜆+2𝑢(𝑮𝜆0+2𝑢0,𝑢0,𝛿0 ⊗⋯⊗𝑮𝜆𝑚−1+2𝑢𝑚−1,𝑢𝑚−1,𝛿𝑚−1), 

where 𝑮𝜆𝑗+2𝑢𝑗,𝑢𝑗,𝛿𝑗  is the Gram matrix of the cell T𝐿𝜆𝑗+2𝑢𝑗
(𝛿𝑗) -module 𝑽𝜆𝑗+2𝑢𝑗,𝑢𝑗  with a 

specific bilinear form and half-diagrams basis. Then the determinant of Gram matrix is 

det𝐺𝑛(𝜆) = ∏ (∏(𝑑𝑒𝑡 𝑮𝜆𝑗+2𝑢𝑗,𝑢𝑗,𝛿𝑗)
𝒅𝜆𝑗+2𝑢𝑗,𝑢𝑗

𝑚−1

𝑗=0

)

(∏ 𝒅𝜆𝑗+2𝑢𝑗,𝑢𝑗
𝑚−1
𝑗=0 )⋅𝑛𝜆+2𝑢

𝑢∈𝛤(𝑣,𝑚)

, 

where 𝒅𝜆𝑗+2𝑢𝑗,𝑢𝑗 = dim𝑉𝜆𝑗+2𝑢𝑗,𝑢𝑗 and 𝑛𝜇 ≔ (
𝑛

𝜇0, … , 𝜇𝑚−1
) for each 𝜇 ∈ 𝛤(𝑛,𝑚).             

    If ∑ 𝜆𝑗𝑗 = 𝑛, from the last theorem we have 𝐺𝑛(𝜆) = ⨁
𝑛𝜆(1) = 𝐼𝑛𝜆×𝑛𝜆, where 𝐼𝑛𝜆×𝑛𝜆 is the 

identity matrix, so the module 𝛥𝑛 ( 𝜆 )   is simple whenever ∑ 𝜆𝑗𝑗 = 𝑛  . Also, if 𝛿𝑗 = 𝑞𝑗 +

𝑞𝑗
−1 ≠  0 for all 𝑗 ∈ ℤ𝑚 and 𝑞𝑗 is not a root of unity for any 𝑗, then the algebra 𝕋𝑛,𝑚(�̆�) is semi-

simple. 
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Proposition 5.3. Let 𝜆 ∈ 𝛬0. The head of the module 𝛥𝑛 ( 𝜆 ) where 𝜆 ∈ 𝛤(𝑛−2𝑣,𝑚) for some 𝑣, 

denoted by 𝐿𝑛 ( 𝜆 ), satisfy the relation 

𝑑𝑖𝑚 𝐿𝑛(𝜆) = ∑ 𝑛𝜆+2𝑢∏𝑑𝑖𝑚𝑳𝜆𝑗+2𝑢𝑗,𝑢𝑗,𝛿𝑗

𝑚−1

𝑖=0𝑢∈𝛤(𝑣,𝑚)

,                      (4) 

where 𝑳𝜆𝑗+2𝑢𝑗,𝑢𝑗,𝛿𝑗 is the head of the T𝐿𝜆𝑗+2𝑢𝑗
(𝛿𝑗)-module 𝑽𝜆𝑗+2𝑢𝑗,𝑢𝑗. 

Proof. This follows from 𝑑𝑖𝑚𝐿𝑛(𝜆) = 𝑟𝑎𝑛𝑘 (𝐺𝑛(𝜆))  and by using Theorem 5.2.               

Corollary 5.4. Let 𝜆 ∈ 𝛬0. The module 𝐿𝑛(𝜆) decomposes as 

⨁𝑢∈𝛤(𝑣,𝑚)⨁
𝑛𝜆+2𝑢(𝑳𝜆0+2𝑢0,𝑢0,𝛿0 ⊗⋯⊗𝑳𝜆𝑚−1+2𝑢𝑚−1,𝑢𝑚−1,𝛿𝑚−1), 

as a vector space, where 𝜆 ∈ 𝛤(𝑛−2𝑣,𝑚) for some 𝑣. 

Proof.  It comes directly from the fact that they have the same dimension.                            

Lemma 5.5. The dimensions of  𝑅𝑎𝑑 ( 𝛥𝑛( 𝜆0 , 𝜆1 )), the radical of 𝛥𝑛( 𝜆0 , 𝜆1 ), is 

∑ 𝑛𝜆+2𝑢(𝑑𝑖𝑚𝑹𝜆0+2𝑢0,𝑢0,𝛿0 𝑑𝑖𝑚𝑽𝜆1+2𝑢1,𝑢1 + 𝑑𝑖𝑚𝑽𝜆0+2𝑢0,𝑢0 𝑑𝑖𝑚𝑹𝜆1+2𝑢1,𝑢1,𝛿1
𝑢∈𝛤(𝑣,𝑚)

− 𝑑𝑖𝑚𝑹𝜆0+2𝑢0,𝑢0,𝛿0 𝑑𝑖𝑚𝑹𝜆1+2𝑢1,𝑢1,𝛿1), 

where 𝜆 ∈ Γ(𝑛−2𝑣,2) and 𝐑𝜆𝑗+2𝑢𝑗,𝑢𝑗,𝛿𝑗 is the radical of the module 𝐕𝜆𝑗+2𝑢𝑗,𝑢𝑗.                     

Theorem 5.6.  Let 𝜆 ∈ 𝛤(𝑛−2𝑣,2) for some 𝑣 . Then 𝑅𝑎𝑑 ( 𝛥𝑛( 𝜆0 , 𝜆1 )) decomposes as 

⨁𝑢∈𝛤(𝑣,2)⨁
𝑛𝜆+2𝑢(𝑹𝜆0+2𝑢0,𝑢0,𝛿0 ⊗𝑽𝜆1+2𝑢1,𝑢1 + 𝑽𝜆0+2𝑢0,𝑢0 ⊗𝑹𝜆1+2𝑢1,𝑢1,𝛿1), 

as a vector space, and it is equal to  

∑ ∑ 𝜎(𝑹𝜆0+2𝑢0,𝑢0,𝛿0 ⊗𝑽𝜆1+2𝑢1,𝑢1 + 𝑽𝜆0+2𝑢0,𝑢0 ⊗𝑹𝜆1+2𝑢1,𝑢1,𝛿1)

𝜎∈�̂�𝑛,2𝑢∈𝛤(𝑣,2)

. 

Proof.  First part comes directly from last lemma, since they have the same dimension. Now we 

are going to prove the second part. As we mentioned before we have 

𝛥𝑛(𝜆) = ∑ ∑ 𝜎(𝑽𝜆0+2𝑢0,𝑢0⨂𝑽𝜆1+2𝑢1,𝑢1)

𝜎∈�̂�𝑛,2𝑢∈𝛤(𝑣,2)

. 

Let 𝑦 be a (( 𝜆0 + 2𝑢0
′ , 𝑢0

′ ), ( 𝜆1 + 2𝑢1
′ , 𝑢1

′ )) −link state for some 𝑢′ ∈  𝛤(𝑣 ,2), so from the last 

equation we can assume that 𝑦 = 𝜋 ( 𝑦0⊗ 𝑦1 ) for some 𝜋 ∈ �̂�𝑛,2 and yi is a ( 𝜆𝑖 + 2𝑢𝑖
′ , 𝑢𝑖

′ )-

link state for each 𝑖 , and let 𝑥  be an element in 𝜎(𝑹𝜆0+2𝑢0,𝑢0,𝛿0⨂𝑽𝜆1+2𝑢1,𝑢1)  or in 

𝜎(𝑽𝜆0+2𝑢0,𝑢0⨂𝑹𝜆1+2𝑢1,𝑢1,𝛿1) for some 𝑢 ∈ 𝛤(𝑣,2)  and some 𝜎 ∈ �̂�𝑛,2 , so we can assume that 

𝑥 = 𝜎(𝑥0⊗𝑥1)  where 𝑥0 ∈ 𝑹𝜆0+2𝑢0,𝑢0,𝛿0  or 𝑥1 ∈ 𝑹𝜆1+2𝑢1,𝑢1,𝛿1 . If 𝑢 ≠  𝑢′  or  𝜎 ≠ 𝜋 , this 

means the colour distributions of 𝑥  and 𝑦  are different, so from the definition of the 

multiplication on the algebra 𝕋𝑛,𝑚   we have 〈 𝑦, 𝑥 〉  = 0. On the other hand, if 𝑢 =  𝑢′ and 

 𝜎 = 𝜋, from equation (3) we have 〈 𝑦, 𝑥 〉 = 〈 𝑦0 , 𝑥0  〉𝜆0+2𝑢0,𝑢0,𝛿0   〈 𝑦1 , 𝑥1  〉𝜆1+2𝑢1,𝑢1,𝛿1 . But 

𝑥𝑖 ∈ 𝑹𝜆𝑖+2𝑢𝑖,𝑢𝑖,𝛿𝑖  for some 𝑖 . Hence 〈 𝑦, 𝑥 〉 = 0  for each 𝑦 ∈ 𝛥𝑛 ( 𝜆 ),  which means 𝑥 ∈

𝑅𝑎𝑑 ( 𝛥𝑛( 𝜆0 , 𝜆1 )). Thus  

∑ ∑ 𝜎(𝑹𝜆0+2𝑢0,𝑢0,𝛿0 ⊗𝑽𝜆1+2𝑢1,𝑢1 + 𝑽𝜆0+2𝑢0,𝑢0 ⊗𝑹𝜆1+2𝑢1,𝑢1,𝛿1)𝜎𝑢 ⊆ 𝑅𝑎𝑑 ( 𝛥𝑛( 𝜆 )),  

but both of them have the same dimension thus they are identical.                                       

Theorem 5.7. Let 𝜆 ∈ 𝛤(𝑛−2𝑣,𝑚) for some v. Then 𝑅𝑎𝑑 ( 𝛥𝑛( 𝜆 ))  equals 
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∑ ∑ 𝜎((𝑹𝜆0+2𝑢0,𝑢0,𝛿0 ⊗𝑽𝜆1+2𝑢1,𝑢1 ⊗⋯⊗𝑽𝜆𝑚−1+2𝑢𝑚−1,𝑢𝑚−1)

𝜎∈�̂�𝑛,𝑚𝑢∈𝛤(𝑣,𝑚)

+ (𝑽𝜆0+2𝑢0,𝑢0 ⊗𝑹𝜆1+2𝑢1,𝑢1,𝛿1 ⊗𝑽𝜆2+2𝑢2,𝑢2 ⊗⋯⊗𝑽𝜆𝑚−1+2𝑢𝑚−1,𝑢𝑚−1) + ⋯

+ (𝑽𝜆0+2𝑢0,𝑢0 ⊗𝑽𝜆1+2𝑢1,𝑢1 ⊗⋯⊗𝑹𝜆𝑚−1+2𝑢𝑚−1,𝑢𝑚−1,𝛿𝑚−1
)). 

 

Corollary 5.8. Let 𝜆 ∈ 𝛤(𝑛−2𝑣,𝑚), then  

𝐿𝑛(𝜆) = ∑ ∑ 𝜎(𝑳𝜆0+2𝑢0,𝑢0,𝛿0 ⊗⋯⊗𝑳𝜆𝑚−1+2𝑢𝑚−1,𝑢𝑚−1,𝛿𝑚−1
)

𝜎∈�̂�𝑛,𝑚𝑢∈𝛤(𝑣,𝑚)

. 

By ⨂𝑗=0
𝑚−1𝑳𝜆𝑗+2𝑢𝑗,𝑢𝑗,𝛿𝑗 we mean its images in the module 1𝜆+2𝑢𝛥𝑛(𝜆).                                   

 

6. HOMOMORPHISMS BETWEEN CELL 𝕋𝐧,𝐦-MODULES 

 

 As we said, the algebra 𝕋𝑛,𝑚(𝛿) is semi-simple algebra when 𝑞𝑗  is not root of unity where 

𝛿𝑗  = 𝑞𝑗 + 𝑞𝑗
−1 ≠ 0 for each 𝑗 ∈ ℤ𝑚. Therefore in what follows, it will be assumed that 𝑞𝑗 is a 

root of unity for some 𝑗, and let 𝒍𝑗 be the minimal positive integer satisfying 𝑞
𝑗

2𝒍𝑗 = 1. The first 

part of next proposition is Lemma 4.1.1 in [3].  

Proposition 6.1. Let λ,μ ∈ Λ and 𝜃 ∶   𝛥𝑛 ( 𝜆 ) → 𝛥𝑛 ( 𝜇 )  be a homomorphism defined by 

θ ( 𝑎 )  =  ∑ 𝛼𝑖 𝑏𝑖𝑖 ,  where 𝛼𝑖 ∈ ℂ, 𝑎 ∈ 𝒯𝑛,𝑚
| 〉
[𝜆] and 𝑏𝑖 ∈ 𝒯𝑛,𝑚

| 〉
[𝜇] for each 𝑖. Then the following 

are true: 

 top (𝑎) = top (𝑏𝑖) whenever 𝛼𝑖 ≠ 0 for each 𝑖. 

 μ
j
= λj − 2tj, for some tj ∈ {0,… , [λj/2]}. 

 If δj is invertible and a contains an ℭj-arc, then bi contains an ℭj-arc in the same 

position. This means that θ preserves arcs when 𝛿𝑗  ≠  0 for each 𝑗 ∈ ℤ𝑚. 

Proof. We are going to show only the last part. Assume that a contains h arcs of the colour ℭ𝑗 

and 𝛿𝑗  ≠  0. Take 𝑥 ∈ 𝕋𝑛,𝑚 to be the diagram defined as follows: top (𝑥) = bot (𝑥) = top (𝑎) 

and if any two nodes 𝑘, 𝑙 ∈ 𝑛 are connected in 𝑎 by a ℭ𝑗 -arc, then these nodes will be also 

connected in 𝑥 by a ℭj-arc and 𝑘 ′, 𝑙′ will be connected by the same colour, other that all the 

nodes will be connected to their projection in the bottom row. Note that 𝑥𝑎 = 𝛿𝑗
ℎ𝑎, so 𝜃(𝑎) =

𝛿𝑗
−ℎ∑ 𝛼𝑖𝑥𝑏𝑖 =𝑖 ∑ 𝛼𝑖𝑏𝑖𝑖 . The ℭ𝑗-arcs on the top row will not be affected by the product, so they 

will be in 𝑥𝑏𝑖 in the same positions of a for each 𝑖.                                                           

     Let 𝜆 ∈ 𝛤(𝑛−2𝑣,𝑚)  for some 𝑣 , and θ: 𝛥𝑛 ( 𝜆 ) → 𝛥𝑛 ( 𝜆 − 2𝑡)  be a homomorphism. The 

homomorphism θ will be non-zero if and only if there is 𝜇 ∈ 𝛤(𝑛,𝑚) of the form 𝜇 = 𝜆 + 2𝑝 for 

some 𝑝 ∈ 𝛤(𝑣,𝑚) such that  𝜃 (1𝜇 𝛥𝑛( 𝜆 )) ≠ {0}. Thus we can restrict θ to define a non-trivial 

homomorphism  

𝜃𝜇 ∶  ⨂𝑖=0
𝑚−1𝑽𝜇𝑖,𝑝𝑖 → ⨂𝑖=0

𝑚−1𝑽𝜇𝑖,𝑝𝑖+𝑡𝑖
. 

Note that if 𝛿𝑖  ≠  0 for each 𝑖, so 𝑝 does not have any important role since it is corresponding to 

number of arcs which are actually  preserved, see Proposition 6.1. Furthermore, if we have a 

homomorphism from ⨂𝑖=0
𝑚−1𝑽𝜆𝑖+2𝑝𝑖,𝑝𝑖  to  ⨂𝑖=0

𝑚−1𝑽𝜆𝑖+2𝑝𝑖,𝑝𝑖+𝑡𝑖
, we can extend it to get a 
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homomorphism from 𝛥𝑛(𝜆 ) to 𝛥𝑛(𝜆 − 2𝑡 ). Thus 𝐻𝑜𝑚𝕋𝑛,𝑚(𝛥𝑛 ( 𝜆  ), 𝛥𝑛 ( 𝜆 − 2𝑡  )) = {0}  if 

and only if 𝐻𝑜𝑚⨂𝑖=0
𝑚−1𝑇𝐿𝜇𝑖(𝛿𝑖)

(⨂𝑖=0
𝑚−1𝑽𝜆𝑖+2𝑝𝑖,𝑝𝑖 ,⨂𝑖=0

𝑚−1𝑽𝜆𝑖+2𝑝𝑖,𝑝𝑖+𝑡𝑖
) = {0}  for each 𝑝 ∈ 𝛤(𝑣,𝑚). 

     Now, if there is a non-zero homomorphism 𝑓𝑖 ∈ 𝐻𝑜𝑚𝑇𝐿𝜇𝑖(𝛿𝑖)
(𝑽𝜆𝑖+2𝑝𝑖,𝑝𝑖 , 𝑽𝜆𝑖+2𝑝𝑖,𝑝𝑖+𝑡𝑖

) for 

each 𝑓𝑖, then ⊗𝑓𝑖 ∈ 𝐻𝑜𝑚⨂𝑖=0
𝑚−1𝑇𝐿𝜇𝑖(𝛿𝑖)

(⨂𝑖=0
𝑚−1𝑽𝜆𝑖+2𝑝𝑖,𝑝𝑖 ,⨂𝑖=0

𝑚−1𝑽𝜆𝑖+2𝑝𝑖,𝑝𝑖+𝑡𝑖
) is also non-zero.  

Proposition 6.2. [3, Theorem 6.2.2]. Let 𝛿𝑖  is invertible for each 𝑖 , 𝜆′ =   𝜆 − 2𝑡   where 

λ ∈ 𝛤(𝑛−2𝑣,𝑚) for some 𝑣. Suppose there exist non-zero homomorphisms from 𝑽𝜆𝑖,0 to 𝑽𝜆𝑖,𝑡𝑖as 

T𝐿𝜆𝑖(𝛿𝑖)-modules for each 𝑖. Then there exists a non-trivial homomorphism from 𝛥𝑛 ( 𝜆  ) to 

𝛥𝑛 ( 𝜆′).                                                                                                                                  

 

7. THE CARTAN MATRIX OF THE BUBBLE ALGEBRA 

 

    Throughout this section we assume that 𝛿𝑗  = 𝑞𝑗 + 𝑞𝑗
−1 ∈ ℂ for each 𝑗 and at least one of the 

parameters is a root of unity other than ±1. We aim to compute the decomposition matrix  of  

𝕋𝑛,𝑚 over ℂ, then the Cartan matrix for 𝕋𝑛,𝑚 can be found, since it is cellular. 

Proposition 7.1. Let 𝜆 ∈ 𝛤(𝑛−2𝑣,𝑚) for some 𝑣. The module 𝛥𝑛 ( 𝜆  )  is simple if and only if  

𝜆𝑖 + 1 = 0(𝑚𝑜𝑑 𝒍𝑖) whenever 𝑞𝑖 is a root of unity where 𝑖 ∈ ℤ𝑚.  

Proof. If 𝑞𝑖 is not a root of unity for some 𝑖, Proposition 2.1 implies to 𝑳𝜆𝑖+2𝑢𝑖,𝑢𝑖,𝛿𝑖 = 𝑽𝜆𝑖+2𝑢𝑖,𝑢𝑖 

for any 𝑢 ∈ 𝛤(𝑣,𝑚)  . On the other hand, if 𝑞𝑖  is a root of unity for some, recall that 

𝑑𝑖𝑚  𝑳𝑛𝑖,𝑢𝑖,𝛿𝑖 = 𝑑𝑖𝑚  𝑽𝑛𝑖,𝑢𝑖  whenever 𝑛𝑖 − 2𝑢𝑖 + 1 = 0(𝑚𝑜𝑑 𝒍𝑖) . Since (𝜆𝑖 + 2𝑢𝑖) − 2𝑢𝑖 +

1 = 0(𝑚𝑜𝑑 𝒍𝑖), so 𝑳𝜆𝑖+2𝑢𝑖,𝑢𝑖,𝛿𝑖 = 𝑽𝜆𝑖+2𝑢𝑖,𝑢𝑖 . Now, by substituting in equation (4), we obtain 

𝑑𝑖𝑚 𝐿𝑛(𝜆) = 𝑑𝑖𝑚𝛥(𝜆) , we are done.                                                                                

    Next we will compute the Loewy length and Loewy layers for each cell module. 

Theorem 7.2. Let 𝕋𝑛,2 (𝛿0, 𝛿1) be the bubble algebra over the complex field and 𝜆0 + 𝜆1 =

 𝑛 − 2𝑣 , 𝜆𝑖 + 𝑡𝑖 + 1 = 0( 𝑚𝑜𝑑 𝒍𝑖) where 𝑖 = 0,1 and 0 <   𝑡𝑖  <  𝑙𝑖 , then   

𝐿𝑛(𝜆 + 2𝑡) ↪ 𝑅𝑎𝑑(𝛥(𝜆)) ↠ 𝐿𝑛(𝜆0 + 2𝑡0, 𝜆1) ⊕ 𝐿𝑛(𝜆0, 𝜆1 + 2𝑡1), 

is an exact sequence,  where t = (t0, t1). Whenever 𝑥0 + 𝑥1  >  𝑛 , we put 𝐿𝑛(𝑥0, 𝑥1) = {0}. 

Proof. Let 𝑅𝑢𝑖,𝑖 ≔ 𝑹𝜆𝑖+2𝑢𝑖,𝑢𝑖,𝛿𝑖 and 𝑉𝑢𝑖:= 𝑽𝜆𝑖+2𝑢𝑖,𝑢𝑖. Define W1,W2 and W1,2 to be  

𝑊1 = ∑ ∑ 𝜎(𝑅𝑢0,0⨂𝑉𝑢1)

𝜎∈�̂�𝑛,2𝑢∈𝛤(𝑣,2)

,           𝑊2 = ∑ ∑ 𝜎(𝑉𝑢0⨂𝑅𝑢1,1)

𝜎∈�̂�𝑛,2𝑢∈𝛤(𝑣,2)

,   

 

𝑊1,2 = ∑ ∑ 𝜎(𝑅𝑢0,0⨂𝑅𝑢1,1)

𝜎∈�̂�𝑛,2𝑢∈𝛤(𝑣,2)

.            

Note that Rad(Δ(λ)) = W1 +W2 , see Theorem 5.6, and W1,2 = W1 ∩W2  To prove our 

theorem we need to show that 𝐿𝑛(𝜆 + 2𝑡) ≅ 𝑊1,2  and (𝑊1 +𝑊2)/𝑊(1,2) ≅  𝐿𝑛(𝜆0 +

2𝑡0, 𝜆1)⊕ 𝐿𝑛(𝜆0, 𝜆1 + 2𝑡1), and we are able to do that by using Theorem 2.2 and the graphical 

visualization of the product on the algebra 𝕋𝑛,𝑚.                                                              

Example 7.2.1. Let 𝛿0 = 𝛿1 = 1. It is easy to show that  is an element in 

𝐑3,1,δ0, so the element  is contained in 𝑅𝑎𝑑 ( 𝛥6(1,1)) since it is an 

element in σ(𝐑3,1,δ0⨂𝐕3,1) for some σ ∈ �̂�6,2. Also 
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 Note that the element is an element in 𝐑5,2,δ0. 

Example 7.2.2. Let δ̆ = (0, √2), then 𝒍0 = 2 and 𝒍1 = 4 and the critical lines are λ0 = 1,3,5,… 

and λ1 = 3,7,… which are represented by coloured lines in figure 1. Also the arrows in the 

figure represent non-zero homomorphisms between the cell modules that are indexed by the 

nodes in the figure. Two nodes will be in the same block if and only if there is an arrow between 

them. Then decomposition matrix of the algebra 𝕋6,2(0, √2) is  

(

 
 

1 1 1 0 0
0 1 0 1 0
0
0
0

0
0
0

1
0
0

0
1
0

0
1
1)

 
 
⊕ (

1 1
0 1

)⊕

(

 
 

1 1 1 0 1
0 1 0 1 1
0
0
0

0
0
0

1
0
0

0
1
0

1
0
1)

 
 
⊕⊕4 (1), 

we order the basis as following {(0,0), (2,0), (0,6), (4,0), (6,0), (1,1), (1,5), (0,2), 

 (2,2), (0,4), (4,2), (2,4), (3,1), (1,3), (5,1), (3,3)}. Then the Cartan matrix of 𝕋6,2(0, √2) is 

  

(

 
 

1 1 1 0 0
1 2 1 1 0
1
0
0

1
1
0

2
0
0

0
2
1

0
1
2)

 
 
⊕ (

1 1
1 2

)⊕

(

 
 

1 1 1 0 1
1 2 1 1 2
1
0
1

1
1
2

2
0
2

0
2
1

2
1
4)

 
 
⊕⊕4 (1). 

 

 

Fig. 1 The Bratteli diagram of  𝕋𝟔,𝟐( �̆� ) when 𝐥𝟎 = 𝟐 and 𝐥𝟏 = 𝟒. 

Theorem 7.3. Let 𝕋𝑛,𝑚(𝛿) be the bubble algebra over the complex field and 𝜆 ∈ 𝛤(𝑛−2𝑣,𝑚), 

0 ≤ 𝑠 < 𝑚 . For each  𝑖 > 𝑠 , suppose either  𝑞𝑖 is not a root of unity or  𝜆𝑖 + 1 = 0 ( 𝑚𝑜𝑑 𝒍𝑖)  

when 𝑞𝑖 is a root of unity, and  for each  𝑗 ≤  𝑠  we have 𝜆𝑗 + 𝑡𝑗 + 1 = 0(𝑚𝑜𝑑 𝒍𝑗)  and 0 < 𝑡𝑗 <

𝒍𝑗. Then the length of the radical series of Δn(λ) is less than or equal to  𝑠 + 1 , and the radical 

layers are 

𝑅𝑎𝑑𝑘( Δ𝑛(𝜆)) 𝑅𝑎𝑑
𝑘+1 ( Δ𝑛(𝜆))⁄ ≅⨁𝐿𝑛( 𝜆

′),

𝜆′∈Ξ𝑘

   

where Ξ𝑘 = {𝜆
′ ∣ there are exactly  𝑘 values of  𝑗 where 0 ≤  𝑗 ≤  𝑠  such that 𝜆𝑗

′ = 𝜆𝑗 + 2𝑡𝑗 for 

the other values we have 𝜆𝑖
′  = 𝜆𝑖}  and 0 ≤  𝑘 ≤  𝑠 + 1. Put 𝐿𝑛(𝜆

′) = {0} whenever ∑𝜆𝑖
′ > 𝑛.     

Proof.  The proof is similar to the one in Theorem 7.2 .                                                
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