THE FIRST-ORDER COHOMOLOGY GROUP OF SOME COMMUTATIVE SEMIGROUP ALGEBRAS Hussein M. GHLAIO¹

¹Department of Mathematics, Misurata University, Misurata, Libya H.Ghlaio@Sci.misuratau.edu.ly

ABSTRACT

In this paper we calculate the first-order cohomology group $\mathcal{H}^{1}(\ell^{1}(S), \ell^{\infty}(S))$, where S is a commutative, 0-cancellative, nil[#]-semigroup.

KEYWORDS

semigroup, semigroup algebra, Cohomology.

1. INTRODUCTION

In [1], Bowling and Duncan investigated the first-order cohomology group $\mathcal{H}^1(\ell^1(S), \ell^\infty(S))$ and $\mathcal{H}^1(\ell^1(S), \ell^1(S))$ for some classes of discrete semigroups, such as Clifford semigroups, Rees semigroups, and bicyclic semigroups. They also studied the cyclic cohomology in these cases. For a Banach algebra \mathcal{A} and a Banach \mathcal{A} -bimodule X, it was shown that it is often possible to compute $\mathcal{H}^1(\mathcal{A}, X)$, where X is \mathcal{A} , or X is \mathcal{A}^* , with their bimodule products. For example, in the case of bicyclic semigroups S, it was proved that $\mathcal{H}^1(\ell^1(S), \ell^\infty(S))$ is isomorphic to $\ell^\infty(\mathbb{N})$.

In our result we shall establish a relationship between the first-order cohomology group $\mathcal{H}^1(\ell^1(S), \ell^\infty(S))$, where the semigroup *S* is a commutative, 0-cancellative, *nil*[#]-semigroup, and the direct sum $\bigoplus_{x\neq o\in S} V_S^*(x) \bigoplus_{C\in \mathcal{C}} W_C^*$ for non-zero elements *x* of *S*, where the direct sum is in the sense of ℓ^∞ .

2. Preliminaries

Let S be a semigroup. An element $e \in S$ is an *identity* if es = se = s ($s \in S$). A semigroup with an identity is a *unital semigroup*.

Suppose that *S* does not have an identity. Then we choose $e \notin S$, and set $S^{\#} = S \cup \{e\}$ with es = se = s ($s \in S$) and $e^2 = e$. Then $S^{\#}$ is a semigroup, called the *unitization* of *S*.

Let *S* be a semigroup, and $x, y \in S$. Then y|x means that $x \in yS^{\#}$.

A zero of S is an element $o \in S$ with $os = so = o^2 = o$ ($s \in S$).

Definition 2.1 Let S be a unital, commutative semigroup. Then, for $x \in S$, we define

$$M_x = \{(y, z) \in S \times S : yz = x\} \text{ and } V_S(x) = \{y \in S : x \in yS\}.$$
 (2.1)

We call $V_{S}(x)$ the set of divisors of x.

Note that $a, b \in V_S(x)$ whenever $ab \in V_S(x)$, and also $x \in V_S(x)$ because *S* has an identity.

The following notion (in a different, additive notation) is given in [2], §4.

Definition 2.2 Let S be a unital commutative semigroup. For each $x \in S$, we define the space $V_S^*(x)$ to consist of the bounded functions $g: V_S(x) \to \mathbb{C}$ satisfying the logarithmic condition

g(ab) = g(a) + g(b) (2.2)

whenever $a, b \in S$ and $ab \in V_S(x)$.

Clearly $V_{S}^{*}(x)$ is a linear space containing the zero function.

Note that $V_S(e) = \{e\}$ and that $V_S^*(e) = \{0\}$. Also, in the case where S has a zero o, $V_S(o) = S$ and $V_S^*(o) = \{0\}$.

Example 2.3 Take $S = \mathbb{R}^+ \times \mathbb{R}^+$ with normal addition. Then S is a unital, commutative semigroup, and dim $V_S^*(x) \ge 2$ for some non-zero $x \in S$.

Take the non-zero element x = (1,1) in *S*. So that we have $V_S(x) = [0,1] \times [0,1]$. For $(r,s) \in V_S(x)$, define the functions $g_1, g_2: V_S(x) \to \mathbb{C}$ by $g_1(r,s) = r$ and $g_2(r,s) = s$. Then $g_1, g_2 \in V_S^*(x)$ and, since g_1 and g_2 are linearly independent, $\dim V_S^*(x) \ge 2$.

Proposition 2.4 Let S be a unital, commutative semigroup and suppose that $x \in S$ is a non-zero element with dim $V_S^*(x) \ge 2$. Then there exists a non-zero $g \in V_S^*(x)$ with g(x) = 0.

Proof Let g_1 and g_2 be linearly independent functions in $V_S^*(x)$. If $g_1(x) = 0$, then take $g = g_1$. Otherwise consider

$$g = g_2 - \frac{g_2(x)}{g_1(x)} \cdot g_1 \,.$$

Then $g \in V_S^*(x)$ and g(x) = 0. Thus the proposition is proved.

Suppose that *S* is a commutative, 0-cancellative semigroup, that $r \in S \setminus \{o\}$, and that $x \in V_S(r)$. Then there exists a unique element $y \in V_S(r)$ such that r = xy.

Note that for r = o, an element y such that xy = o is not necessarily unique.

Definition 2.5 Let S be a commutative, 0-cancellative semigroup. For each non-zero element $r \in S$, the unique element $y \in V_S(r)$ of $x \in V_S(r)$ such that xy = r is called u(x).

The following is a small modification of the set M_x that we defined in Definition 2.1.

Definition 2.6 Let S be a unital, commutative semigroup with zero o. We define the set

 $M_o^- = \{(a, b) \in S \times S : a \neq o, b \neq o \quad and \quad ab = o\}.$

We define an equivalence relation ~ on the set M_o^- . It is the equivalence relation generated by the relations:

- 1. $(a_1a_2, c) \sim (a_1, a_2c)$ for all $a_1, a_2, c \in S$ with $a_1a_2c = o$ and $a_1a_2 \neq o$, $a_2c \neq o$; and
- 2. $(a, b) \sim (b, a)$ for $(a, b) \in M_o^-$.

It is possible that $M_0^- = \emptyset$. Indeed, take $S = \{o, e\}$. Then $M_0^- = \emptyset$.

Definition 2.7 Let *S* be a unital, commutative semigroup with zero 0 and identity e. Let $C \subset M_o^-$ be an equivalence class, and let $\varphi: C \to \mathbb{C}$ be a bounded function. Then we define the set $\tilde{C} = C \cup (S \times \{o\}) \cup (\{o\} \times S)$, and extend the function φ to a function $\tilde{\varphi}: \tilde{C} \to \mathbb{C}$ satisfying

$$\tilde{\varphi}(o,a) = \tilde{\varphi}(a,o) = 0 \quad (a \in S).$$
 (2.3)

Then the function φ is *sensible* if we have

$$\tilde{\varphi}(a,bc) + \tilde{\varphi}(b,ac) = \tilde{\varphi}(ab,c)$$
(2.4)

whenever $(a, bc) \in \tilde{C}$ or $(b, ac) \in \tilde{C}$ or $(ab, c) \in \tilde{C}$.

Journal of Academic Research	Issue 13	January2019
مجلة البحوث الأكاديمية	العدد الثالث عشر	يناير 2019

Note that $\tilde{\varphi}$ is defined at all three pairs (a, bc), (b, ac), (ab, c) whenever any one of these pairs is in the equivalence class \tilde{C} . E.g. if $(a, bc) \in \tilde{C}$, then either $(ac, b) \in \tilde{C}$, and hence $(b, ac) \in \tilde{C}$, or (ac, b) = (o, b).

Note that (2.4) implies that

$$\varphi(a,b) + \varphi(b,a) = \tilde{\varphi}(ab,e) = \tilde{\varphi}(o,e) = 0 \quad ((a,b) \in C) \,. \tag{2.5}$$

The sensible functions on an equivalence class C form a linear space, which we call W_C^* , and they have the uniform norm

$$\|\varphi\|_{\infty} = \sup_{(a,b)\in C} |\varphi(a,b)|.$$

The space $W_{\mathcal{C}}^*$ is a closed linear subspace of the Banach space $\ell^{\infty}(\mathcal{C})$.

We denote the collection of all such equivalence classes by C.

Definition 2.8 Let S be a semigroup. Then the convolution product of two elements f and g in the Banach space $\ell^1(S)$ is defined by the formula:

$$f * g = (\sum_{s \in S} \alpha_s \delta_s) * (\sum_{t \in S} \beta_t \delta_t) = \sum \{ (\sum_{st=r \in S} \alpha_s \beta_t) \delta_r \}.$$

The inner sum will vanish if there are no s and t in S such that st = r. Clearly, $(\ell^1(S), *)$ is a Banach algebra; it is called the *semigroup algebra* of S.

The *dual space* of $\mathcal{A} = \ell^{1}(S)$ is $\mathcal{A}^{*} = \ell^{\infty}(S)$, where

$$\ell^{\infty}(S) = \left\{ f: S \to \mathbb{C}: \quad \|f\| = \sup_{s \in S} |f(s)| < \infty \right\},\$$

with the duality given by:

$$\langle f,\lambda\rangle = \textstyle\sum_{s\in S} f(s)\lambda(s) \quad (f\in \ell^1(S),\lambda\in \ell^\infty(S)) \,.$$

3. The main result

In our result we shall establish a relationship between the first-order cohomology group $\mathcal{H}^{1}(\ell^{1}(S), \ell^{\infty}(S))$, where the semigroup *S* is commutative, 0-cancellative, *nil* [#]-semigroup, and the direct sum $\bigoplus_{x\neq o\in S} V_{S}^{*}(x) \bigoplus_{c\in C} W_{C}^{*}$ for non-zero elements *x* of *S*, where the direct sum is in the sense of ℓ^{∞} .

Theorem 3.1 Let *S* be a commutative, 0-cancellative, nil [#]-semigroup. Then

$$\mathcal{H}^{1}(\ell^{1}(S), \ell^{\infty}(S)) \cong \bigoplus_{x \neq o \in S} V_{S}^{*}(x) \bigoplus_{C \in \mathcal{C}} W_{C}^{*},$$

where the sum is an ℓ^{∞} - direct sum.

Proof We define an isomorphism

$$\Theta: \bigoplus_{x \neq o \in S} V_S^*(x) \bigoplus_{C \in \mathcal{C}} W_C^* \to \mathcal{H}^1(\mathcal{A}, \mathcal{A}^*)$$

as follows: Given bounded families $(g_x) \in \bigoplus_{x \neq o \in S} V_S^*(x)$ and $(\varphi_C) \in \bigoplus_{C \in C} W_C^*$, so that $((g_x), (\varphi_C))$ belongs to the ℓ^{∞} - direct sum, we define $\gamma: S \times S \to \mathbb{C}$ such that

Journal of Academic Research مجلة البحوث الأكاديمية

Issue 13 العدد الثالث عشر January2019 ینایر 2019

$$\gamma(s,t) = \begin{cases} 0 & if \ s = 0 \ or \ t = 0, \\ g_{st}(s) & if \ st \neq 0, \\ \varphi_{c}(s,t) & if \ st = 0 \ and \ (s,t) \in C \end{cases}$$
(3.1)

Now set $\mathcal{A} = \ell^1(S)$, and define a map $D: \mathcal{A} \to \mathcal{A}^*$ by the relation:

$$\langle \delta_t, D(\delta_s) \rangle = \gamma(s, t) \quad (s, t \in S).$$
 (3.2)

The map D extends to a linear map, and D is bounded because the functions φ_c and g_x are uniformly bounded.

Note that $D(\delta_o) = 0 = \langle \delta_o, D(\delta_s) \rangle$ for each $s \in S$.

We *claim* (essentially following [2, Proposition 4.2]), that D is a derivation.

To prove this, take the elements $u, v, t \in S$. We shall show that

$$\langle \delta_t, D(\delta_{uv}) \rangle = \langle \delta_t, uD(\delta_v) + D(\delta_u)v \rangle = 0.$$

That is we shall show that $\gamma(uv, t) = \gamma(u, vt) + \gamma(v, ut)$.

In the case where uvt = o, we have to discuss the following two cases:

Case 1: If at least two of u, v and t are zero, so that uv, vt and ut are zero, then by using (3.1) we have $\gamma(uv, t) = \gamma(u, vt) = \gamma(v, ut) = 0$.

Case 2: If at most one of u, v and t are zero, then we have to look at two possibilities.

Firstly, if each of the pairs (uv, t), (ut, v) and (vt, u) contains a zero element, we still have

$$\gamma(ut, v) = \gamma(u, tv) = \gamma(v, tu) = 0.$$

Secondly, if at least one of the pairs (uv, t), (ut, v), and (vt, u) has both elements non-zero, say $uv \neq o \neq t$, then (uv, t) must belong to an equivalence class C. If $ut \neq o$, then $(v, ut) \in C$ and, if $vt \neq o$, then $(u, vt) \in C$, so that by using (2.4), we have

$$\gamma(uv,t) - \gamma(u,vt) - \gamma(v,ut) = \tilde{\varphi}_{\mathcal{C}}(uv,t) - \tilde{\varphi}_{\mathcal{C}}(u,vt) - \tilde{\varphi}_{\mathcal{C}}(v,ut) = 0.$$

In the case where $uvt \neq o$, we have

$$\begin{split} \langle \delta_t, D(\delta_{uv}) \rangle &= \gamma(uv, t) = g_{uvt}(uv) = g_{uvt}(u) + g_{uvt}(v) = \gamma(u, vt) + \gamma(v, ut) \\ &= \langle \delta_{vt}, D(\delta_u) \rangle + \langle \delta_{ut}, D(\delta_v) \rangle = \langle \delta_t, \delta_v \cdot D(\delta_u) + \delta_u \cdot D(\delta_v) \rangle \,. \end{split}$$

Thus *D* is a bounded derivation.

The derivation *D* depends on our choice of the function $g_x \in V_S^*(x)$ and the function $\varphi_C \in W_C^*$. Given bounded families $g_x \in V_S^*(x)$ $(x \in S)$ and $\varphi_C \in W_C^*$ $(C \in C)$, then we have an element denoted by $D[(g_x)_{x \in S}, (\varphi_C)_{C \in C}] \in \mathcal{H}^1(\mathcal{A}, \mathcal{A}^*)$.

We now consider the map

$$\Theta: \bigoplus_{x \neq o \in S} V_S^*(x) \bigoplus_{C \in \mathcal{C}} W_C^* \to \mathcal{H}^{-1}(\mathcal{A}, \mathcal{A}^*)$$

such that

$$\Theta((g_x),(\varphi_C)) = D[(g_x)_{x\in S},(\varphi_C)_{C\in C}].$$

Journal of Academic Research
مجلة البحوث الأكاديمية

Issue 13 العدد الثالث عشر

Clearly Θ is linear.

Suppose that $D[(g_x)_{x\in S}, (\varphi_C)_{C\in C}] = 0$. Then $\langle \delta_t, D(\delta_s) \rangle = 0$ for all $s, t \in S$, and so $g_{st}(s_1) = \varphi_C(s_1, s_2 t) = 0$ whenever $s = s_1 s_2, t \in S$ and $st \neq o$, $s_1 s_2 t = o$. This shows that Θ is injective.

Finally, to see that Θ is surjective, suppose that $D_0: \mathcal{A} \to \mathcal{A}^*$ is a derivation, and then define $\gamma(s,t) = \langle \delta_t, D_0(\delta_s) \rangle$ for all $st \neq o$ in S.

We *claim* that, for $x \neq o$, the function γ is of form $g_x(s)$ for some $g_x \in V_s^*(x)$ when restricted to the set $M_x = \{(s, t): st = x\}$. We also *claim* that for each $C \in C$, the function $\gamma_C = \gamma | C$ is an element of W_C^* ; and in fact $\gamma(s, t) = 0$ if s = o or t = o. Then clearly that g_x and φ_C must be uniformly bounded otherwise D_0 is not a bounded derivation, so that we have

$$D_0 = D[(g_x)_{x \in S}, (\gamma_C)_{C \in \mathcal{C}}]$$

Since $D(\delta_0) = 0$, whenever $\gamma(o, t) = 0$ for all $t \in S$. Also for $s \in S$ we have that

$$\gamma(s,o) = \langle \delta_o, D(\delta_s) \rangle = \langle \delta_1, \delta_o D(\delta_s) \rangle = \langle \delta_1, \delta_o D(\delta_o \delta_s) - \delta_s D(\delta_o) \rangle = 0,$$

so that $\gamma(s, t) = 0$ whenever s = o or t = o.

Now restrict γ to M_x for $x \neq o$. We claim that there exists $g_x \in V_s^*$ with $\gamma(s, t) = g_x(s)$. We do not give proof because this is essentially a repeat of a previous proof.

Restrict γ to $\tilde{C} \in C$. We *claim* that $\gamma | \tilde{C}$ is an element of W_C^* , and so that γ is sensible.

To prove our claim, we shall see that

$$\tilde{\gamma}(ab,c) = \tilde{\gamma}(a,bc) + \tilde{\gamma}(b,ac)$$
 (3.3)

whenever $(ab, c) \in \tilde{C}$ or $(a, bc) \in \tilde{C}$ or $(c, ab) \in \tilde{C}$.

In fact $\tilde{\gamma}(u, v) = \langle \delta_v, D(\delta_u) \rangle$, and so, by using (3.3), for $a, b, c \in S$, we have

 $\tilde{\gamma}(ab,c) = \langle \delta_c, D(\delta_{ab}) \rangle = \langle \delta_c, \delta_b D(\delta_a) + \delta_a D(\delta_a) \rangle$

$$= \langle \delta_{bc}, D(\delta_a) \rangle + \langle \delta_{ac}, D(\delta_b) \rangle = \tilde{\gamma}(a, bc) + \tilde{\gamma}(b, ac) \,.$$

Thus the theorem is proved.

Corollary 3.2 Let S be a commutative, 0-cancellative, nil[#]-semigroup. Then

 $\dim \mathcal{H}^{1}(\ell^{1}(S), \ell^{\infty}(S)) = \sum_{x \neq o \in S} \dim V_{S}^{*}(x) + \sum_{c \in \mathcal{C}} \dim W_{c}^{*}.$

REFERENCES

- 1. S. Bowling and J. Duncan, First order cohomology of Banach algebras, *Math. Scand.* **56**(1997), 130-145.
- 2. N. Groenbaek, A characterization of weakly amenable Banach algebras, *Studia Math*, **94** (1989), 149-161.