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 Short abstract. 
 Order (or band) projections are the most important subjects in 

functional analysis and its applications. This paper studies a special class of positive 

linear operator known as order projections, and provides some of its application 

which are; extension theorem for linear operators, theory of order continuous 

operators, and the components of positive operators. A useful comparison property of 

order projection is described. 
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I. INTRODUCTION 

In linear algebra and functional analysis a 

projection is a linear transformation P  from a vector 

space to itself for example PP 2
whenever P  is 

applied twice to any value, it gives the same result as 

if it were applied once (idempotent). Many 

researchers studied and analyzed the order projections 

and their  related subjects, some of them; [Schott 

2013]  studied an iterative method to solve linear 

operator equations sequences of linear iterative 

operator occur which have a nontrivial projection 

kernel. [Laura 2013] devoted the set of all products 

with an orthogonal projection and a positive operator, 

and related the factorization with the notion of 

compatibility and explored the polar decomposition of 

the operator. [Corach 2012] they extend the 

relationship between closed unbounded idempotents 

and dense  decomposition of a Hillbert space to notion 

of compatibility between closed subspaces and 

positive bounded operators. 

In this research we shall study a special class of 

positive operators known as order (or band) 

projections, first we will review a few properties of 

order dense Riesz subspaces, and study important 

theorems describe the basic properties of order dense 

ideals. In fact, the band generated by any set coincides 

with the band generated by the ideal generated by the 

same set, it was also clarified that not every band is a 

projection band. Finally, the basic properties of order 

projections are summarized in the important theorem. 

 

II. CONCEPTS AND THE STUDY 

Definition 1 [Kreyszing 1978] 

An element x in an ordered vector space E  is called 

positive whenever 0x . 

The set of all positive elements of E  will be denoted 

by
E .  

Definition 2 [Kreyszing 1978] 

 Recall that a Riesz subspace G  of a Riesz space E is 

said to be Order dense in E whenever for each 

,0 Ex  there exists some Gy  with xy 0 . 

Definition 3 [Kreyszing 1978] 

A Riesz space E  is called Archimedean whenever 

01  xn  holds in E  for each 
 Ex . 

The following characterization of order dense Riesz 

subspaces in Archimedean Riesz spaces will be used 

freely in this research. 

Theorem 1 A Riesz subspace G  of an Archimedean 

Riesz space E  is order dense in E  if and only if  

xxyGy  }0:{   hold for each 
 Ex . 

Proof. 

If sup }0:{ xyGyx  hold for each ,Ex  

then G is clearly order dense in .E  

For the converse, assume that G is order dense in ,E  

and let .Ex  Assume by way of contradiction that 

some Ez  satisfies xz   and zy   for each 

Gy  with .0 xy   
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Then, by the order denseness of G in E there exists 

some Gu with zxu 0 . From  xu 0  we 

see that .zu   and so  

.20 xzzxuuu   

By induction, xnu 0 hold for each ,n  contradicting 

the Archimedean property of E Thus,  

xxyGy  }0:{  

holds in ,E  and the proof of the theorem is finished.  

Consider an order dense Riesz subspace G of .E  It is 

useful to know that the embedding of G into E  

preserves arbitrary suprema and infima. This result is 

stated next. 

Theorem 2 [Carl 1990] 

Let G be either an ideal or an order dense Riesz 

subspace of a Riesz space ,E  and let 
 GD satisfy 

.D Then 0D holds in G if and only if 0D  

holds in .E  

Definition 4 [Kreyszing  1978] 

Recall that a subset A of a Riesz space is called solid 

whenever yx  and Ay imply Ax . 

Definition 5 [Charalambos 1985] 

A solid vector subspace is referred to as an ideal. 

 

It's obvious that if A  and B are solid subsets of a Riesz 

space, then their algebraic sum is 

}:{ BbandAabaBA   

Is likewise a solid set. In particular, the algebraic sum of 

two ideal is also an ideal. 

Definition 6 [Charalambos 1985] 

disjoint complement
dA is defined by 

}:{ AyallforyxExAd  . 

We write 
ddA  for 

ddA )( . Not that  

}0{ dAA . 

Next theorem describes the basic properties of order 

dense ideals. Keep in mind that the disjoint complement 

of an arbitrary nonempty set of Riesz space is always 

ideal. 

Theorem 3 

For an ideal A of a Riesz space E the following 

statements hold: 

1. The ideal A  is order dense in E if and only if 

}0{dA . 

2. The ideal 
dAA is order dense in E.  

3. The ideal A  is order dense in .ddA  

Proof.  

(1) Let A  be order dense in E , and let 
dAx . If 

0x  holds, then there exists some Ay  with 

xy 0 . 

This implies },0{ dAAy  a contradiction. Thus, 

}0{dA holds. 

For the converse, assume that }0{dA holds, and let 

Ex0 . If 0 xy  holds for all 
 Ax , then 

}0{ dAx  must also hold. Thus, 0 xy holds 

for some . Ax   

Then Axy   and 00  xy  show that A  is 

order dense in E . 

(2) If
dAAx  , then Ax   and 

dAx   both 

hold.  

Therefore, },0{ ddd AAx  which shows that 

}0{)(  ddAA . By (1) 
dAA is order dense in 

E . 

(3) This follows immediately from (1).  

Definition 7 [Kreyszing  1978] 

In Riesz space a net }{ x is said to be order convergent 

to x  (in symbols xx 0

 ) whenever there exists 

another net }{ y  (with the same indexed set) satisfying 

0y and  yxx  for all  (abbreviated as 

0  yxx  

Definition 8 [Kreyszing  1978] 

 A subsetA of a Riesz space is said to be order closed 

whenever Ax }{  and xx 0

 imply Ax .  

Not that a solid subset A is order closed if and only if 

Ax }{   and xx  0  imply Ax . Indeed, if 

the solid set A  has the latter property and a 

net Ax }{   satisfies xx 0

 , then there x  

and xyx  )(0  , we easily see that Ax . 

Definition 9 [John 1990] 

An order closed ideal is referred to as a band. 

Thus, by the above discussion an ideal A  is a band if and 

only if Ax }{   and xx  0  imply Ax (or, 

equivalently, if and only if 
 AD  and xD  imply 

Ax ). 

 In the early development of Riesz spaces a band was 

called a normal subspace. 

Let Abe a nonempty subset of a Riesz space E. Then the 

ideal generated by A is the smallest (with respect to 

inclusion) ideal that contains A.  



Journal of Academic Research (Applied Sciences), VOL.02, December 2021        13 

 

A moment is thought reveals that this ideal is 

.
,,

,,:

1

1

1

























n

i

iin

n

xxwithR

andAxxEx

 



 

The ideal generated by an element x will be denoted 

by xA . By the above  

}0:{ xywithEyAx   . 

Every ideal of the form xA is referred to as a principal 

ideal. Similarly, the band generated by A  is the 

smallest band that contains A . Such a band always exists 

(since it is the intersection of the family of all bands that 

contain A , and E is one of them). 

Clearly, the band generated by A coincides with the band 

generated by the ideal generated by A. 

The band generated by an ideal is described as follows. 

Theorem 4  

If A is an ideal of a Riesz space E, then the band 

generated by A is precisely 

}.0}{:{ xxwithAxEx  

  

In particular, every ideal is order dense in the band it 

generates. Moreover, the band B, generated by a single 

element x  satisfies 

}:{ yxnyEyBx  . 

Proof.   
Let  

}0}{:{ xxwithAxExB  

 . 

Clearly every band containing A  must contain B. Thus, 

to establish  our result it is enough to show that B  is a 

band. 

To this end, let ., Byx   Pick two nets 
 Ax }{  and 

 Ay }{  with xx  0  and .0 yy    

From 

yxyxyxyxyx  )()(   

And 

xx     

We see that B is vector subspace. Also, if xz   holds, 

then from 

Axz  }{   and zxzxz  0 , 

It follows that Bz . Hence, B  is an ideal. Finally, to 

see that B is a band, let Bx }{   satisfy 

xx  0 . 

Put }0:{  xywithsomeAyD  . 

Then 
 AD and xD   hold. Therefore, Bx , and 

so B is a band. 

To establish the formula for xB , let xBy . 

By the above there exists a net xAx }{  with 

yx  0 . Now given  there exists some n  

with xnx  , and so yxnyx   holds. 

This easily implies yxny  , and our conclusion 

follows. 

It is obvious that 
dA is always a band. It is important 

to know that the band generated by a set A  is precisely 
ddA . 

Theorem 5 

The band generated by a nonempty subset A  of an 

Archimedean Riesz space is precisely 
ddA  (and hence if 

A  is a band, then 
ddAA   holds). 

Proof.  

We have said before that the band generated by A is the 

same as the band generated by the ideal generated by A. 

Therefore we can assume that A  is an ideal. By theorem 

3 we see that A  is order dense in 
ddA , and hence (by 

Theorem 1) for each 
ddAx  there exists a net 

Ax }{   with xx  0 .  

This easily implies that 
ddA  is the smallest band 

containing A. 

A useful condition under which an ideal is necessarily a 

band is presented next 

Theorem 6 

Let A and B be two ideal in a Riesz space E such 

that BAE  . Then A and B are both bands satisfying 
dBA  and 

dAB  (and hence 
ddAA   and 

ddBB   both hold). 

Proof:  

Note first that for each Aa  and Bb we have  

}0{ BAba , 

And so BA  . In particular, 
dBA . 

On the other hand, if ,dBx  then write 

bax  with ,Aa ,Bb  and note that 

}0{ dBBaxb implies Aax  .  

Thus, ABd  , and so 
dBA   holds. This shows that 

A is a band. By the symmetry of the situation 
dAB   

also hold. 

 

Definition 10 [Charalambos 1985] 

A band B in a Riesz space E that satisfies 
dBBE   

is referred to as a projection band. 
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The next result characterizes the ideals that are projection 

bands.  

Theorem 7 

For an ideal B in a Riesz space E  the following 

statements are equivalent: 

1. B is a projection band, 
dBBE  holds. 

2. For each 
 Ex the supremum of the set 

],0[ xB 
 exists in E and belongs to B. 

3. There exists an ideal A of E such that 

ABE   holds. 

Proof:  

(1)  (2) Let ,Ex choose the (unique) elements 

,0 By and 
dBz0  with .zyx   If 

 Bu  satisfies ,zyxu   then it follows from 

dBzyu  )(0  and Byu  )(  that 

.0)(  yu  Thus, ,yu   and so y  is an upper 

bound of the set ],0[ xB 
. Since ],0[ xBy  , 

we see that 

],0[sup}:sup{ xBxuBuy  
 holds in 

E. 

(2 (3)fix some , Ex  and let ],0[sup xBu  . 

Clearly, u belongs to B . Put .0 uxy  If 

Bw0 , then ,0 Bwy   and moreover from 

Bwyu 0
 

and 

,)()()( xwuxwuyuwyu   

it follows that 

.uwyu   Hence, 0 wy  holds, and so 

dBy . From ,yux   we see that ,dBBE   

and therefore (3) holds with .dBA   

(3) (1)  this follows from theorem 6. 

Not every band is a projection band, and a Riesz 

space in which every band is projection band is referred 

to as a Riesz space with the projection property. From 

the preceding theorem it should be clear that in a 

Dedekind complete Riesz space every band is a 

projection band. This was proven by F. Riesz 

[Charalambos 1985] in one of his early fundamental 

papers on Riesz spaces. Because it guarantees an 

abundance of order projections, we state it next as a 

separate theorem. 

Theorem 8 

If B is a band in a Dedekind complete Riesz space E, then 
dBBE   holds. 

As usual, an operatorP on a vector space is called a 

Projection whenever 
2PP  . If a projection P  is 

defined on a Riesz space and P is also a positive 

operator, then P  will be referred to as  a positive 

Projection. 

Now let B be a projection band in a Riesz space E. Thus, 
dBBE  holds, and so every element Ex has a 

unique decomposition 
21 xxx  , where Bx 1

 and 

.2

dBx   Then it is easy to see that a projection 

EEPB :  is defined by 

1)( xxPB  . 

Clearly
BP  is a positive projection. Any projection of the 

form 
BP  is called an order projection (or a band 

projection). Thus, the order projection are associated 

with the projection bands in a one-to-one fashion. 

Theorem 9 

If B  is a projection band in a Riesz space E, then  

},0:{sup)( xyByxPB   

holds for all 
 Ex . 

Proof:  
Let ,Ex then (by theorem 7) 

  }0:{sup xyByu   exists and belongs to B. 

We claim that )(xPu B . 

Write 
21 xxx   with Bx  10  and 

,0 2

dBx   and note that xx  10  implies 

ux  10 . Thus, 
2110 xxxxu  , and 

hence 
dBxu  1

since Bxu  1
 and 

},0{ dBB  we see that ,1xu   as claimed. 

Among all projections the order projections are 

characterized as follows. 

Theorem 10  

For an operator EET : on a Riesz space the 

following statements are equivalent: 

1. Tis order projection. 

2. Tis a projection satisfying IT 0 ( where, 

of course, I is the identity operator on E). 

3. T andI-T have disjoint ranges, that is, 

TyyTx   holds for all ., Eyx   

Proof: 

(1)   (2) obvious. 

(2  (3) Let ,, Eyx  put .)( yTITxz   

From the inequality yTIz )(  it follows that 

,0)()(0 2  yTTyTITz  and so .0Tz  

Similarly, ,0)(  zTI  and hence   

0)(  TzzTIz  holds. 

This shows that T  and TI   have disjoint ranges. 

(3)   (1) Let A  and B  be the ideals generated by the 

ranges of T and ,TI   respectively. 
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 By our hypothesis it follows that BA  , and from 

xTITxx )(   we see that .BAE    

Hence, by theorem 6 both A  and B are projection bands 

of E. Now the identity 

0)(  TxxPTxPxPTxxP AAAA  

shows that APT   holds, thus T is an order projection, 

and the proof of the theorem is finished. 

From the previous we noted that a positive projection 

need not be an order projection, as the next example 

shows. 

Example1 [John B 1990] 

consider the operator ]1,0[]1,0[: 11 LLT   defined by  















 

1

0

)()( dxxffT

                              

(1) 

where Eq.(1) denotes the constant function one, 

clearly
20 TT   holds, and it is not difficult to see 

that T is not an order projection. 

The basic properties of order projections are summarized 

in the next theorem. 

Theorem 11 

If A  and B are projection bands in Riesz space E, then 

,dA  ,BA  and BA  are likewise projection bands. 

Moreover, they satisfy 

1. ;AA
PIP d   

2. ;ABBABA PPPPP 
 and 

3. .BABABA PPPPP 
 

Proof  

(1) From 
dAAE   it follows that AAdd   holds 

(see theorem 6), and so 
dA  is a projection band. The 

identity AA
PIP d   should be obvious. 

(2) To see that BA  is a projection band note that the 

identity ],0[],0[ xPxB B  implies 

],0[],0[ xPAxBA B  for each .Ex  

Thus,  

],0[sup],0[sup xPAxBAxPP BBA   

holds for each ,Ex  which (by theorem 7) shows that 

BA  is a projection band and that 
BABA PPP 

 

holds. Similarly, 
BABA PPP 

. 

(3) Assume at the beginning that the two projection bands 

A  and B satisfy .BA  Let .Ex  If  

BAba 0  satisfy ,xba   then clearly 

],0[ xAa   and ],,0[ xBb   and so 

BAxPxPba BA   holds. 

This shows that  

BAxPxPxBA BA  ],0[)sup( , 

And hence by theorem7 the ideal BA is a projection 

band. Also, 
BABA PPP 

holds. 

Now the general case can be established by observing 

that .BBABA d   In addition, we have  

BBABBABA PPPP dd 
 BBA PPP d   

BABA

BBAABBA

PPP

PPPPPPIP



 )(
, 

so the proof of the theorem is finished. 

An immediate consequence of statement (2) of the 

preceding theorem is that two arbitrary order projection 

mutually commute. A useful comparison property of 

order projection is described next. 

Theorem 12 

If A and Bare projection bands in Riesz space E, then the 

following statements are equivalent: 

1. BA  

2. ;AABBA PPPPP    and 

3. .BA PP   

Proof:  

(1) (2)  Let BA ,then from theorem1 it follows 

that  

ABAABBA PPPPPP  
 

(2)  (3)  For each x0  we have 

xPxPPxP BABA  , and so 
BA PP   holds. 

(3) (1)  If Ax0 , then it follows from 

BxPxPx BA 0  

that Bx . Therefore, BA  holds, as required.    
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