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Short abstract. Order (or band) projections are the most important subjects in
functional analysis and its applications. This paper studies a special class of positive
linear operator known as order projections, and provides some of its application
which are; extension theorem for linear operators, theory of order continuous

operators, and the components of positive operators. A useful comparison property of
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order projection is described.

I. INTRODUCTION

In linear algebra and functional analysis a
projection is a linear transformation P from a vector

space to itself for example P? =P whenever P is

applied twice to any value, it gives the same result as
if it were applied once (idempotent). Many
researchers studied and analyzed the order projections
and their related subjects, some of them; [Schott
2013] studied an iterative method to solve linear
operator equations sequences of linear iterative
operator occur which have a nontrivial projection
kernel. [Laura 2013] devoted the set of all products
with an orthogonal projection and a positive operator,
and related the factorization with the notion of
compatibility and explored the polar decomposition of
the operator. [Corach 2012] they extend the
relationship between closed unbounded idempotents
and dense decomposition of a Hillbert space to notion
of compatibility between closed subspaces and
positive bounded operators.

In this research we shall study a special class of
positive operators known as order (or band)
projections, first we will review a few properties of
order dense Riesz subspaces, and study important
theorems describe the basic properties of order dense
ideals. In fact, the band generated by any set coincides
with the band generated by the ideal generated by the
same set, it was also clarified that not every band is a
projection band. Finally, the basic properties of order
projections are summarized in the important theorem.

1. CONCEPTS AND THE STUDY

Definition 1 [Kreyszing 1978]

An element X in an ordered vector space E is called
positive whenever X > 0.

The set of all positive elements of E will be denoted
by E™.

Definition 2 [Kreyszing 1978]

Recall that a Riesz subspace G of a Riesz space E is
said to be Order dense in E whenever for each
0 < X e E, there existssome y € G with 0 <y < X.

Definition 3 [Kreyszing 1978]
A Riesz space E is called Archimedean whenever

nx 4 0 holdsin E foreach x e E*.

The following characterization of order dense Riesz
subspaces in Archimedean Riesz spaces will be used
freely in this research.

Theorem 1 A Riesz subspace G of an Archimedean
Riesz space E is order dense in E if and only if

{yeG:0<y<x}T x holdforeach x e E* .
Proof.

If supx={yeG:0<y<x}hold for each X E",
then G is clearly order dense in E.

For the converse, assume that G is order dense in E,

and let X € E™. Assume by way of contradiction that
some Ze€E satisfies z<x and y<z for each

yeG with O<y<x
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Then, by the order denseness of G in E there exists
some UeGwith O<u<x—z.From O<u<X we
see that U < z. and so

O<2u=u+uU<x—-z+z=X
By induction, O < nu < Xxhold for each n, contradicting
the Archimedean property of E Thus,
{yeG:0<y<x}Tx
holds in E, and the proof of the theorem is finished.
Consider an order dense Riesz subspace G of E. It is

useful to know that the embedding of G into E
preserves arbitrary suprema and infima. This result is
stated next.

Theorem 2 [Carl 1990]

Let G be either an ideal or an order dense Riesz
subspace of a Riesz space E, and let D — G satisfy
D .Then D4 Oholds in G if and only if D4 0
holds in E.

Definition 4 [Kreyszing 1978]

Recall that a subset A of a Riesz space is called solid
whenever |X| < |y| and y € Aimply X € A.

Definition 5 [Charalambos 1985]
A solid vector subspace is referred to as an ideal.

It's obvious that if A and B are solid subsets of a Riesz
space, then their algebraic sum is
A+B={a+b:ae Aandb e B}

Is likewise a solid set. In particular, the algebraic sum of
two ideal is also an ideal.
Definition 6 [Charalambos 1985]

disjoint complement A% is defined by
A" ={xeE:x Ly forally e A}.
we write A™ for (A?)?. Not that

An A’ ={0}.

Next theorem describes the basic properties of order
dense ideals. Keep in mind that the disjoint complement
of an arbitrary nonempty set of Riesz space is always
ideal.

Theorem 3
For an ideal A of a Riesz space E the following
statements hold:

1. Theideal A isorder dense in E if and only if
A ={0}.

2. Theideal A® A is order dense in E.

3. Theideal A isorder densein A%,

Proof.
(1) Let A be order dense in E , and let x e A . If
X#0 holds, then there exists some Yy e A with

0<y<|¥.

This implies Y € A~ A? ={0}, a contradiction. Thus,
A’ ={0}holds.

For the converse, assume that A” ={O0} holds, and let
O<xeE.If yAx=0 holds for all xe A", then
x € A® ={0} must also hold. Thus, y A X > O holds

for some X € A*.
Then yAXe A and 0< Yy AX<0 show that A is
order dense in E .

2 IfXLAD®AY, then x L A and X L A? both
hold.

Therefore, X € A® N A™ ={0}, which shows that
(A® A" ={0}. By (1) A® A%is order dense in

E.
(3) This follows immediately from (1).

Definition 7 [Kreyszing 1978]

In Riesz space a net {X_, }is said to be order convergent
to x (in symbols X, —°>X) whenever there exists
another net {y_} (with the same indexed set) satisfying
y, ¥+ 0 and X, =X <y, for all o (abbreviated as
X, =X <y, 40

Definition 8 [Kreyszing 1978]
A subsetA of a Riesz space is said to be order closed

whenever {X,} < Aand X, —>> Ximply X € A,

Not that a solid subset Ais order closed if and only if
{X,J<Aand 0<x, T x imply X € A. Indeed, if
A has the property and a
net{X,} < A satisfies X, ——> X , then there |x,|

the solid set latter

and 0 < (|X|— Y, T|X| , we easily see that X € A.

Definition 9 [John 1990]
An order closed ideal is referred to as a band.

Thus, by the above discussion an ideal A is a band if and
only if {Xx,}< A and 0<x, T x imply x e A (or,

equivalently, if and only if D= A" and D T x imply

X e A).

In the early development of Riesz spaces a band was
called a normal subspace.

Let Abe a nonempty subset of a Riesz space E. Then the
ideal generated by A is the smallest (with respect to
inclusion) ideal that contains A.
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A moment is thought reveals that this ideal is

xeE:3x,...,X, € Aand
Jove Ay € RO Wit 2|
i=1

The ideal generated by an element X will be denoted
by A, . By the above

A ={yecE :3/1>Owith|y|Si|X|}-

Every ideal of the form A, is referred to as a principal

ideal. Similarly, the band generated by A is the
smallest band that contains A . Such a band always exists
(since it is the intersection of the family of all bands that
contain A, and E is one of them).

Clearly, the band generated by A coincides with the band
generated by the ideal generated by A.

The band generated by an ideal is described as follows.

Theorem 4
If A is an ideal of a Riesz space E, then the band
generated by A is precisely

{xeE:3{x }= A with0< x, T |x}.

In particular, every ideal is order dense in the band it
generates. Moreover, the band B, generated by a single
element X satisfies

B, ={y € E:|y|an|x T|y}.
Proof.
Let

B={xeE:3{x,}c A" with0<x, T|x}

Clearly every band containing A must contain B. Thus,
to establish our result it is enough to show that B is a
band.

Tothisend, let X, Y € B. Pick two nets {X,} < A" and
{y,}= A" with 0<x, T|x and O<y, T|yl.
From

X+ YA (X, +Y,) TIx+ Y A(X+|y) =|x+Y]|
And

4 %, T12x

We see that B is vector subspace. Also, if |Z|S|X| holds,
then from

{7 Ax, 3= Aand 0<|zlAx, Tz Alx =]z,
It follows that z € B . Hence, B is an ideal. Finally, to
see that B is a band, let {X,}< B satisfy
0<x, T|¥.
Put D={y e A:3someawith0<y<x_}.

Then D cA*and D T x hold. Therefore, X € B, and
so B is aband.
To establish the formula for B, , let y € B, .

By the above there exists a net {X,}< A, with
0<x, T |y| . Now given « there exists some n
with x, <n|x, and so X, <|y|An|x<|y| holds.

This easily implies |y| A n|x| T |y| , and our conclusion
follows.

It is obvious that A% is always a band. It is important
to know that the band generated by a set A is precisely

Add

Theorem 5

The band generated by a nonempty subset A of an
Archimedean Riesz space is precisely A“ (and hence if

A isaband, then A= A" holds).

Proof.

We have said before that the band generated by A is the
same as the band generated by the ideal generated by A.

Therefore we can assume that A is an ideal. By theorem
3 we see that A is order dense in A% , and hence (by
Theorem 1) for each X € A there exists a net
{x,y< Awith 0<x, T|x .

This easily implies that A™ s the smallest band
containing A.

A useful condition under which an ideal is necessarily a
band is presented next

Theorem 6
Let A and B be two ideal in a Riesz space E such

that E = A@ B. Then A and B are both bands satisfying
A=B? and B=A" (and hence A=A and

B = B poth hold).
Proof:
Note first that for each a € A and b € B we have

|a| /\|b| e AnB={0},
Andso A L B.Inparticular, A< B?.
On the hand, if xeBY, then
X=a+b with aeA beB, and note that
b=x-aeBNB? ={0}implies x=a € A.
Thus, B® < A, and so A= B holds. This shows that

Aiis a band. By the symmetry of the situation B = A®
also hold.

other write

Definition 10 [Charalambos 1985]

Aband B in a Riesz space E that satisfies E = B @ B*
is referred to as a projection band.
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The next result characterizes the ideals that are projection
bands.

Theorem 7

For an ideal B in a Riesz space E the following
statements are equivalent:

1. Bisaprojection band, E = B @ B holds.
2. Foreach X € E™ the supremum of the set

B* N[0, X] exists in E and belongs to B.

3. There exists an ideal A of E such that
E =B ® A holds.

Proof:
(1) = (2) Let X € E™, choose the (unique) elements

0<yeB, and 0<zeB? with x=y+z If
U e B satisfies u<x=y+2z, then it follows from
0<@U-Yy)"<zeB? and (U—Yy)" €B that
(u—y) " =0. Thus, u<vy, and so Yy is an upper

bound of the set B™ N[0, x]. Since y € BN[0,X],
we see that
y=sup{ue B":u<x}=supBN[0,x] holds in
E.

(2= 3)fixsome X € E™, and let u =sup B N[0, x].
Clearly, u belongs to B . Put y=x—-u>0. If
0<weB, then 0<yAwe B, and moreover from

O<u+yaAnweB

and

U+ yAW=(U+Y)AU+W)=XAU+W)<X,
it follows that

U+yYAWSU. Hence, YAW=0 holds, and so

y e B. From X =u+y, we see that E=B®B",

and therefore (3) holds with A= B“.
(3)=(1) this follows from theorem 6.

Not every band is a projection band, and a Riesz
space in which every band is projection band is referred
to as a Riesz space with the projection property. From
the preceding theorem it should be clear that in a
Dedekind complete Riesz space every band is a
projection band. This was proven by F. Riesz
[Charalambos 1985] in one of his early fundamental
papers on Riesz spaces. Because it guarantees an
abundance of order projections, we state it next as a
separate theorem.

Theorem 8
If B is a band in a Dedekind complete Riesz space E, then

E =B® B holds.

As usual, an operatorP on a vector space is called a

Projection whenever P =P?. If a projection P is
defined on a Riesz space and P is also a positive

operator, then P will be referred to as
Projection.
Now let B be a projection band in a Riesz space E. Thus,

E = B@® B holds, and so every element X € E has a
unique decomposition X = X, + X,, where X, € B and

a positive

X, € BY. Then it is easy to see that a projection
P; : E — E s defined by
Ps (X) =X,
Clearly P, is a positive projection. Any projection of the
form P, is called an order projection (or a band
projection). Thus, the order projection are associated
with the projection bands in a one-to-one fashion.
Theorem 9
If B is a projection band in a Riesz space E, then
P;(xX) =sup{yeB:0<y<x},

holds forall x e E™.
Proof:
Let X € E™, then (by theorem 7)

u =sup{y e B:0 <y < x} exists and belongs to B.
We claim that U =P, (X) .
Write X=X +X, with 0<x e€B and
0<x,eB’ and note that 0<x, <X implies
0<x,<u. Thus, OSU—X <X—X, =X, , and
u—x, eB® since

hence u-x,eB and

d .
BB ={0}, we see that u = X,, as claimed.

Among all projections the order
characterized as follows.

Theorem 10
For an operator T:E —>E on a Riesz space the
following statements are equivalent:
1. Tis order projection.
2. Tis a projection satisfying O <T < | ( where,
of course, | is the identity operator on E).
3. T andl-T have disjoint ranges, that is,
Tx L y—Ty holds forall X,y e E.

projections are

Proof:
(1) = (2) obvious.

2= (3) Let X,yeE", put z=TxA(l -T)y.
From the inequality z<(l—T)y it follows that
0<Tz<(I-T)y=(T -T?)y=0, and so Tz =0.
Similarly, (1-T)z=0, and
z=(1-T)z+Tz =0 holds.

This shows that T and | —T have disjoint ranges.

(3) = (1) Let A and B be the ideals generated by the
ranges of T and | —T, respectively.

hence
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By our hypothesis it follows that A L B, and from
X=Tx+(l =T)X weseethat E=A®B.

Hence, by theorem 6 both A and B are projection bands
of E. Now the identity

PX=Tx=Px-P,Ix=P,(x-Tx) =0

shows that T = P, holds, thus T is an order projection,
and the proof of the theorem is finished.

From the previous we noted that a positive projection
need not be an order projection, as the next example
shows.

Examplel [John B 1990]
consider the operator T : L [0,1] — L,[0,1] defined by

T(f):Uf(X)dXJ' 1)

where EQ.(1) denotes the constant function one,

clearly 0 <T =T? holds, and it is not difficult to see

that T is not an order projection.
The basic properties of order projections are summarized

in the next theorem.

Theorem 11

If A and B are projection bands in Riesz space E, then
A%, ANB, and A+ B are likewise projection bands.
Moreover, they satisfy

1. P,=1-P,;

A
2. P,p=P,P;=PF;P,; and

3. P,g=P.+PF,—-PF;.
Proof
(1) From E = A® A? it follows that A™ = A holds
(see theorem 6), and so A% is a projection band. The

identity P,, =1 — P, should be obvious.

(2) To see that A B is a projection band note that the
identity B N[0, x]=[0, P;x] implies
ANBNI[0,x]=AN[0,P,x] foreach xe E".
Thus,

P,Psx=sup AnBNI[0,x]=sup AN[0, P;x]
holds for each X € E™, which (by theorem 7) shows that
ANB is a projection band and that P, , =P,P,
holds. Similarly, P, = P,Ps.

(3) Assume at the beginning that the two projection bands

A and B satisfy ALB. Let XeE". If
O<a+beA+B satisfy a+b<Xx, then clearly

ae An[0,x] and beBMN[0,x], and so
a+b<P,x+P;xe A+ B holds.

This shows that
sup(A+B) N[0, x] = P,x+ P;xe A+ B,

And hence by theorem?7 the ideal A+ Bis a projection
band. Also, P,,, = P, + Pgholds.
Now the general case can be established by observing
that A+ B = AN B? + B. Inaddition, we have

PA+B = PAde+B = PAde + PB = PAF’Bd + Py
=PA(| - PB)+ P, =P,— PP, +F;
:PA+PB_PAmB ’

so the proof of the theorem is finished.

An immediate consequence of statement (2) of the
preceding theorem is that two arbitrary order projection
mutually commute. A useful comparison property of
order projection is described next.

Theorem 12
If A and Bare projection bands in Riesz space E, then the
following statements are equivalent:

1. AcB
2. PP, =PBP,=P,; and
3. P,<P,.

Proof:

(1)= () Let Ac B then from theoreml it follows
that
PaPs =PPy =Py g =P,

2 = @0 For each 0<X we

P, x=P;P,x<P;X,andso P, <P, holds.
B)=(1) If 0<x e A, then it follows from

0<x=P,x<Py;xeB

that X € B. Therefore, A < B holds, as required.

have
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